TS – Tectonics & Structural Geology
Programme group chairs:
Andrea Argnani,
Leni Scheck-Wenderoth,
Olivier Lacombe,
Claudio Rosenberg,
Florian Fusseis,
Rebecca Bell,
Lucilla Benedetti
TS11 – Methods and Techniques in Tectonics and Structural Geology
TS11.1
Quantitative analysis tools have become increasingly common in structural geology. Imaging techniques such as computed tomography are used to build highly accurate, three-dimensional models of geological structures. Structural measurements are facilitated and often accelerated owing to photogrammetric methods of reconstructing the studied outcrops. Geological structures can then be classified using statistical methods. These new methods allow for the integration of observations and quantification on scales which were inaccessible before. Experimental, analytical, and numerical techniques are used to develop quantitative mechanical models of rock deformation processes, and with the advent of modern computing power, high-resolution models and systematic simulations are nowadays feasible. Remote sensing techniques, including airborne or terrestrial photogrammetry and lidar, make it possible to realize exquisitely detailed three-dimensional (3D) topographic datasets from outcrop to regional scales. These technologies allow detailed, quantitative geological analysis in inaccessible, even extra-terrestrial, terrain. The data-reduction process that transforms these rich datasets into geologically meaningful descriptions of the structure and composition of outcropping rocks is, however, a significant challenge. Recent developments in this area are paving the way for novel geological analysis, incorporating data analysis techniques such as 3D interpolation, machine-learning, (semi-)automatic techniques, and immersive visualization.
We invite contributions discussing advances and challenges in quantifying geological structures at all scales.
Share:
https://meetingorganizer.copernicus.org/EGU2019/session/30687
Orals
|
Fri, 12 Apr, 10:45–12:30
Room K2
Posters
|
Attendance
Fri, 12 Apr, 14:00–15:45
Hall X2
TS11.2
| PICO
Analogue experiments and numerical simulation have become an integral part of the Earth explorer's toolbox to select, formulate, and test hypotheses on the origin and evolution of geological phenomena. In addition, a growing body of structural ground truth and geophysical observations as well as profound advances in remote sensing techniques offers to compare the modeled predictions with nature
To foster synergy between modelers and geologists focusing on field and geophysical or remote sensing data, we provide a multi-disciplinary platform to discuss research on tectonics, structural geology, rock mechanics, geodynamics, volcanology, geomorphology, and sedimentology.
We therefore invite contributions demonstrating the state-of-the-art in analogue and numerical / analytical modelling on a variety of spatial and temporal scales, varying from earthquakes and volcanic eruptions to plate tectonics and landscape evolution, as well as contributions focusing on remote sensing, geophysical and geodetic studies, with a specific focus on transpression. Local to crustal scale transpression is the most common deformation regime recognized at active and ancient plate boundaries formed by oblique plate convergence, and although the concept of strain partitioning is well established, the heterogeneity of transpressive deformation continues to be an important topic.
We especially welcome those presentations that discuss model strengths and weaknesses, challenge the existing limits, or compare/combine the different modelling techniques with observations from the natural world to realistically simulate and better understand the Earth's behavior.
Share:
https://meetingorganizer.copernicus.org/EGU2019/session/30688
PICOs
|
Fri, 12 Apr, 16:15–18:00
PICO spot 1
TS11.5
Understanding the structure, architecture and tectonic evolution of a given region is of great importance to assess hydrocarbon prospectivity, since it provides significant informations on: heat-flow, the geometry and timing of accommodation space, the trap type and its activity.
The session aims at showing how different geophysical prospecting methods can be applied in structural geology and tectonics in order to obtain the best possible models that
allow to:
- better define and assess the exploration potential of specific regions, based on their tectonic history.
- understand and construct tectonic and structural models for a given area.
Share:
https://meetingorganizer.copernicus.org/EGU2019/session/30170
Posters
|
Attendance
Mon, 08 Apr, 14:00–15:45
Hall X2
GD8.1
| PICO
Geological and geophysical data provide quantitative information which permit the advancement of our understanding of the present, and past, interior of the Earth. Examples of such processes span from the internal structure of the Earth, plate kinematics, composition of geomaterials, estimation of physical conditions and dating of key geological events, thermal state of the Earth to more shallow processes such as reservoir geomechanics, or nuclear waste storage.
A quantitative understanding of the dynamics and the feedbacks between geological processes requires the integration of geological data with process oriented numerical models. Innovative inverse methods, linking forward dynamic models with observables, are topics of growing interest within the community. Improving our knowledge of the governing physical parameters can thus be addressed while reconciling models and observables.
Resolving the interactions between various processes occurring at scales differing from each other over several orders of magnitude in space and time represents a computational challenge. Hence, simulating such coupled, nonlinear physics-based forward models requires both the development of new approaches and the enhancement of established numerical schemes.
The majority of geological processes combine several physical mechanisms such as hydrological, thermal, chemical and mechanical processes (e.g. thermo-mechanical convection). Understanding the tight couplings among those processes represents a challenging and essential research direction. The development of novel numerical modelling approaches, which resolve multi-physics feedbacks, is vital in order to provide accurate predictions and gain deeper understanding of geological processes.
We invite contributions from the following two complementary themes:
#1 Computational advances associated with
- alternative spatial and/or temporal discretisations for existing forward/inverse models
- scalable HPC implementations of new and existing methodologies (GPUs / multi-core)
- solver and preconditioner developments
- code and methodology comparisons (“benchmarks”)
- open source implementations for the community
#2 Physics advances associated with
- development of partial differential equations to describe geological processes
- inverse and adjoint-based methods
- numerical model validation through comparison with natural observations and geophysical data
- scientific insights enabled by 2D and 3D modelling
- utilisation of coupled models to address nonlinear interactions
Share:
https://meetingorganizer.copernicus.org/EGU2019/session/30976
PICOs
|
Wed, 10 Apr, 14:00–15:45
PICO spot 3
GM2.2
Topographic data are fundamental to landscape characterization across the geosciences, for monitoring change and supporting process modelling. Over the last decade, the dominance of laser-based instruments for high resolution data collection has been challenged by advances in digital photogrammetry and computer vision, particularly in ‘structure from motion’ (SfM) algorithms, which offer a new paradigm to geoscientists.
High resolution topographic (HiRT) data are now obtained over spatial scales from millimetres to kilometres, and over durations of single events to lasting time series (e.g. from sub-second to decadal-duration time-lapse), allowing evaluation of dependencies between event magnitudes and frequencies. Such 4D-reconstruction capabilities enable new insight in diverse fields such as soil erosion, micro-topography reconstruction, volcanology, glaciology, landslide monitoring, and coastal and fluvial geomorphology. Furthermore, broad data integration from multiple sensors offers increasingly exciting opportunities.
This session will evaluate the advances in techniques to model topography and to study patterns of topographic change at multiple temporal and spatial scales. We invite contributions covering all aspects of HiRT reconstruction in the geosciences, and particularly those which transfer traditional expertise or demonstrate a significant advance enabled by novel datasets. We encourage contributions describing workflows that optimize data acquisition and post-processing to guarantee acceptable accuracies and to automate data application (e.g. geomorphic feature detection and tracking), and field-based experimental studies using novel multi-instrument and multi-scale methodologies. A major goal is to provide a cross-disciplinary exchange of experiences with modern technologies and data processing tools, to highlight their potentials, limitations and challenges in different environments.
Solicited speaker: Kuo-Jen Chang (National Taipei University of Technology) - UAS LiDAR data processing, quality assessment and geosciences prospects
Share:
https://meetingorganizer.copernicus.org/EGU2019/session/30391
Orals
|
Mon, 08 Apr, 16:15–18:00
Room G2
Posters
|
Attendance
Tue, 09 Apr, 08:30–10:15
Hall X2
GD7.2
Many regions of the Earth, from crust to core, exhibit anisotropic fabrics which can reveal much about geodynamic processes in the subsurface. These fabrics can exist at a variety of scales, from crystallographic orientations to regional structure alignments. In the past few decades, a tremendous body of multidisciplinary research has been dedicated to characterizing anisotropy in the solid Earth and understanding its geodynamical implications. This has included work in fields such as: (1) geophysics, to make in situ observations and construct models of anisotropic properties at a range of depths; (2) mineral physics, to explain the cause of some of these observations; and (3) numerical modelling, to relate the inferred fabrics to regional stress and flow regimes and, thus, geodynamic processes in the Earth. The study of anisotropy in the Solid Earth encompasses topics so diverse that it often appears fragmented according to regions of interest, e.g., the upper or lower crust, oceanic lithosphere, continental lithosphere, cratons, subduction zones, D'', or the inner core. The aim of this session is to bring together scientists working on different aspects of anisotropy to provide a comprehensive overview of the field. We encourage contributions from all disciplines of the earth sciences (including mineral physics, seismology, magnetotellurics, geodynamic modelling) focused on anisotropy at all scales and depths within the Earth.
Share:
https://meetingorganizer.copernicus.org/EGU2019/session/32203
Orals
|
Thu, 11 Apr, 16:15–18:00
Room D1
Posters
|
Attendance
Thu, 11 Apr, 08:30–10:15
Hall X2
GI4.1
Ground Penetrating Radar (GPR) is a safe, advanced, non-destructive and non-invasive imaging technique that can be effectively used for inspecting the subsurface as well as natural and man-made structures. During GPR surveys, a source is used to send high-frequency electromagnetic waves into the ground or structure under test; at the boundaries where the electromagnetic properties of media change, the electromagnetic waves may undergo transmission, reflection, refraction and diffraction; the radar sensors measure the amplitudes and travel times of signals returning to the surface.
This session aims at bringing together scientists, engineers, industrial delegates and end-users working in all GPR areas, ranging from fundamental electromagnetics to the numerous fields of applications. With this session, we wish to provide a supportive framework for (1) the delivery of critical updates on the ongoing research activities, (2) fruitful discussions and development of new ideas, (3) community-building through the identification of skill sets and collaboration opportunities, (4) vital exposure of early-career scientists to the GPR research community.
We have identified a series of topics of interest for this session, listed below.
1. Ground Penetrating Radar instrumentation
- Innovative GPR equipment
- Design, realization and optimization of GPR antennas
- Equipment testing and calibration procedures
2. Ground Penetrating Radar methodology
- Survey planning and data acquisition strategies
- Methods and tools for data analysis and interpretation
- Data processing algorithms, electromagnetic modelling, imaging and inversion techniques
- Studying the relationship between GPR sensed quantities and physical properties of inspected subsurface/structures useful for application needs
- Advanced data visualization methods to clearly and efficiently communicate the significance of GPR data
3. Ground Penetrating Radar applications and case studies
- Earth sciences
- Civil engineering
- Environmental engineering
- Archaeology and cultural heritage
- Management of water resources
- Humanitarian mine clearance
- Vital signs detection of trapped people in natural and man-made disasters
- Planetary exploration
4. Contributions on the combined use of Ground Penetrating Radar and other geoscience instrumentation, in all applications fields
5. Communication and education initiatives and methods
Additional information
This session is organized by Members of TU1208 GPR Association (www.gpradar.eu/tu1208); the association is a follow-up initiative of COST (European Cooperation in Science and Technology) Action TU1208 “Civil engineering applications of Ground Penetrating Radar”.
Share:
https://meetingorganizer.copernicus.org/EGU2019/session/30181
Orals
|
Wed, 10 Apr, 08:30–12:30
Room 0.96
Posters
|
Attendance
Wed, 10 Apr, 14:00–15:45
Hall X1