Numerous cases of induced/triggered seismicity have been reported in the last decades as a result of the increasing interest in fluid injection/extraction projects related to geo-resources exploration. When such seismicity is felt by the population, it can negatively affect public perception of geo-energies and may lead to the cancellation of important projects. Furthermore, large earthquakes may jeopardize wellbore stability and damage surface infrastructure. Thus, a key issue is to better understand how to monitor and model the processes leading to seismicity, in order to facilitate the development of effective and reliable forecasting methodologies during deep underground exploitation.
Given the complexity of induced seismicity processes and their interdisciplinary nature, understanding the triggering mechanisms implies to take into account coupled thermo-hydro-mechanical-chemical processes.
In this session, we invite contributions from research aimed at understanding such processes during exploitation of deep underground resources, including hydrocarbon
extraction, wastewater disposal, geothermal
energy exploitation, hydraulic fracturing, gas storage and production, mining, and reservoir impoundment for hydro-energy.
We particularly encourage novel contributions based on laboratory and underground near-fault experiments, numerical modelling, spatio-temporal variations of physical parameters and seismicity, and fieldwork, covering both theoretical and experimental aspects of induced and triggered seismicity at multiple spatial and temporal scales.
ERE6.5
Induced/triggered seismicity in geo-energy applications: monitoring, modeling, mitigation, and forecasting
Co-organized as EMRP1.82/SM6.5