Union-wide
Side Events
Disciplinary Sessions
Inter- and Transdisciplinary Sessions

Session programme

SM5

SM – Seismology

Programme group chairs: Heiner Igel, P. Martin Mai, Damiano Pesaresi, Philippe Jousset, Aldo Zollo, Henriette Sudhaus, Cedric Schmelzbach, Lapo Boschi, Fabrice Cotton

SM5 – Seismic Instrumentation & Infrastructure

SM5.1

The use of fibre technologies for geophysical applications is expanding since few years. The design of highly sensitive sensors, such as rotational seismometers or strainmeters is one approach. In addition, initiatives such as SMART cables systems aim at piggy-backing environmental sensors onto submarine repeater units in order to improve sensor coverage across the oceans The use the fibre itself as a distribution of sensors for temperature or strain distributed sensing is an alternative. The vast majority of all telecommunications data (99%) transit through submarine and land-based fibre-optic cables. As the need for larger bandwidth and more rapid transmission has increased, so do the global networks of cables encircling the Earth. They now cover even remote regions of most continents and oceans. There have been significant advances in cable design and manufacturing technology, as well as cable deployment procedures. In very recent years there have been significant breakthroughs, applying techniques developed to interrogate the cables at very high precision over very large distances. For example, laser reflectometry using DAS (Distributed Acoustic Sensing) on both dedicated experimental and commercial fiber optic cables onshore and in submarine environment have successfully detected a variety of seismic sources (including ambient noise (microseism), local and teleseismic earthquakes, volcanic events, etc.). Other laser reflectometry techniques have long been used for monitoring of large-scale engineering infrastructures (dams, tunnels, bridges, pipelines, boreholes, etc.) and recently have been applied to natural hazard studies on land (monitoring of landslides or karst sinkholes) and have broader applications to the study of faults for instance. We welcome contributions that involve the application of fiber-optic cables or sensors in seismology, geodesy, geophysics, natural hazards, etc. from the laboratory to large-scale field tests.
We are delighted to have an Invited Speaker: Giuseppe Marra

Share:
Co-organized as NH4.13
Convener: Philippe Jousset | Co-conveners: Gilda Currenti, Marc-Andre Gutscher, Shane Murphy, Luciano Zuccarello
Orals
| Mon, 08 Apr, 08:30–10:15
 
Room -2.91
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X2
SM5.2

The number and quality of seismic stations and networks in Europe continually improves, nevertheless there is always scope to optimize their performance. In this session we welcome contributions from all aspects of seismic network installation, operation and management. This includes site selection; equipment testing and installation; planning and implementing communication paths; policies for redundancy in data acquisition, processing and archiving; and integration of different datasets including GPS and OBS.

Share:
Co-organized as GI4.13
Convener: Damiano Pesaresi | Co-conveners: Helle Pedersen, Angelo Strollo
Orals
| Wed, 10 Apr, 08:30–10:15
 
Room -2.91
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall X2
AS5.1 | PICO

The International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) senses the solid Earth, the oceans and the atmosphere with a global network of seismic, infrasound, and hydroacoustic sensors as well as detectors for atmospheric radioactivity. The primary purpose of the IMS data is for nuclear explosion monitoring regarding all aspects of detecting, locating and characterizing nuclear explosions and their radioactivity releases. On-site verification technologies apply similar methods on smaller scales as well as geophysical methods such as ground penetrating radar and geomagnetic surveying with the goal of identifying evidence for a nuclear explosion close to ground zero. Papers in this session address advances in the sensor technologies, new and historic data, data collection, data processing and analysis methods and algorithms, uncertainty analysis, machine learning and data mining, experiments and simulations including atmospheric transport modelling. This session also welcomes papers on applications of the IMS and OSI instrumentation data. This covers the use of IMS data for disaster risk reduction such as tsunami early warning, earthquake hazard assessment, volcano ash plume warning, radiological emergencies and climate change related monitoring. The scientific applications of IMS data establish another large range of topics, including acoustic wave propagation in the Earth crust, stratospheric wind fields and gravity waves, global atmospheric circulation patterns, deep ocean temperature profiles and whale migration. The use of IMS data for such purposes returns a benefit with regard to calibration, data analysis methods and performance of the primary mission of monitoring for nuclear explosions.

Share:
Co-organized as NH1.18/SM5.3
Convener: Martin Kalinowski | Co-conveners: Lars Ceranna, Yan Jia, Peter Nielsen, Ole Ross
PICOs
| Fri, 12 Apr, 10:45–12:30
 
PICO spot 5a
NH6.9

The session aims to collect original or review contributions on the use of data from Low-Earth-Orbiting (LEO) satellites making measurements in the thermosphere-ionosphere to investigate ionospheric anomalies related to space weather, geophysical and artificial sources. In fact, data from LEO satellites can provide a global view of near-Earth space variability and are complementary to ground-based observations, which have limited global coverage. The AMPERE project and integration of the Swarm data into ESA’s Space Weather program are current examples of this. The availability of thermosphere and ionosphere data from the DEMETER satellite and the new operative CSES mission demonstrates that also satellites that have not been specifically designed for space weather studies can provide important contributions to this field. On the other hand, there are evidences that earthquakes can generate electromagnetic anomalies into the near Earth space. A multi-instrumental approach, by using ground observations (magnetometers, magnetotelluric stations, GNSS receivers, etc.) and LEO satellites (DEMETER, Swarm, CSES, etc.) measurements can help in clarifying the missing scientific knowledge of the lithosphere-atmosphere-ionosphere coupling (LAIC) mechanisms before, during and after large earthquakes. We also solicit contributions on studies about other phenomena, such as tropospheric and anthropogenic electromagnetic emissions, that influence the near-Earth electromagnetic and plasma environment on all relevant topics including data processing, data-assimilation in models, space weather case studies, superimposed epoch analyses, etc.

Share:
Co-organized as AS4.57/EMRP2.10/ESSI1.9/GI3.14/NP9.3/SM5.4/ST4.10
Convener: Mirko Piersanti | Co-conveners: Livio Conti, Rune Floberghagen, Xuhui Shen, Michel Parrot
Orals
| Tue, 09 Apr, 16:15–18:00
 
Room M2
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall X3
G4.4

Integrated modelling of gravity, magnetic, seismological and petrological data contributes to a wide range of geo-scientific research, from imaging the structure of the Solid earth and geodynamic processes (e.g. GIA and the coupling between Solid Earth and Cryosphere) to near surface investigations. The session especially welcomes contributions related to spatial and temporal variations of the Earth gravity and magnetic field at all scales and their application in an integrated context.

Share:
Co-organized as EMRP2.31/GD10.4/SM5.6
Convener: Jörg Ebbing | Co-conveners: Carla Braitenberg, Alexandra Guy, Bart Root, Holger Steffen
Orals
| Fri, 12 Apr, 08:30–12:30
 
Room -2.21, Fri, 12 Apr, 14:00–15:45
 
Room -2.91
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall X3
G3.5 Media

Geodesy is becoming increasingly important for observing the hydrological cycle and its effects on solid Earth shape. Signals in geodetic data have revealed water's influence on other geophysical processes including earthquakes, volcanos, land subsidence, mountain uplift, and other aspects of long- and short-term vertical land motion. GPS and InSAR measurements, for example, respectively provide high temporal and spatial resolution to study natural hydrologically-related deformation and monitor anthropogenic groundwater extraction and recharge, and GRACE is helping to track changes in the global terrestrial water storage. Signals of loading from changes in surface and groundwater storage are seen from basin to continental scale. Additionally, novel use of GPS reflectometry is operational for monitoring soil moisture and snow depth at continuous GPS stations in the western USA and Canada. We encourage contributions describing new observations and models of hydrological signals in geodetic time series and/or imaging. These include but are not limited to studies exploring deformation induced by loading, aquifer extraction/recharge, poroelastic deformation and stress changes, techniques for removing hydrological signals from geodetic datasets, monitoring water resources, or teleconnections between hydrologic and other geophysical phenomena.

Share:
Co-organized as HS2.5.5/NH1.13/SM5.7
Convener: William Hammond | Co-conveners: Kristel Chanard, Francesca Silverii, Nicola DAgostino
Orals
| Wed, 10 Apr, 08:30–10:15
 
Room D1
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X3
EOS10.1

State-of-the-art environmental research infrastructures become increasingly complex and costly, often requiring integration of different equipment, services, and data, as well as extensive international collaboration. Clear and measurable impact of the research Infrastructures is therefore needed in order to justify such investments (from member states and the EU) - whether it is an impact in terms of knowledge, developments in the environmental field of science, new innovative approaches, capacity-building or other socio-economic impacts. Moreover, improving the impact supports the long-term sustainability of the research infrastructures.

This session aims at discussing how to best monitor, interpret, and assess the efficiency and impact of environmental and Earth system research infrastructures. Even more importantly, the session seeks a breadth of contributions, with focus on ways to increase and improve the impact of research infrastructures, not only through the scientific outcomes they produce, but also, for example, through increasing the number of touchpoints with other actors in the society, or awareness of the services they offer- whether this is enhanced by lobbying, direct cooperation with industrial partners, or any other action. Talks on how to enhance the impact through the strategic communications activities are especially welcome.

Share:
Co-organized as AS5.25/BG1.59/GI1.8/OS4.34/SM5.8
Convener: Katri Ahlgren | Co-convener: Magdalena Brus
Orals
| Wed, 10 Apr, 10:45–12:30
 
Room L8
Posters
| Attendance Wed, 10 Apr, 08:30–10:15
 
Hall X4
GMPV5.2

Over the past few years, major technological advances allowed to significantly increase both the spatial coverage and frequency bandwidth of geochemical and geophysical observations at active volcanoes. Establishment of high-rate GPS networks, continuous gravity meters, dense arrays of broad-band seismometers, and networks of instruments for the quantitative measurement of volcanic gas emissions now permits an unprecedented, multi-parameter vision of the surface manifestations of mass transport beneath volcanoes. Accompanying these progresses are new models and processing techniques leading to innovative paradigms for the interpretation and inversion of observational data. Within this context, this session aims at bringing together a multidisciplinary audience to discuss about the most recent innovations in monitoring approaches and to present observations, methods and models that increase our understanding of volcanic processes.

We welcome contribution related to (1) New instruments and techniques for the measurement of geophysical and geochemical parameters, from in-situ methods to ground-, air- and space-based remote sensing techniques; (2) Reports of significant case histories, documenting the relationships between the measured parameters and the evolving volcanic processes; (3) New modelling frameworks for the interpretation of the observed data, and their significance in terms of eruption forecasting.

The session will provide an opportunity to discuss volcanic activity from a monitoring perspective on a wide range of volcanoes. We therefore encourage submission of papers that are easily understandable to a broad, multi-disciplinary audience.

Share:
Co-organized as AS3.28/NH2.7/SM5.9
Convener: Jurgen Neuberg | Co-conveners: Evgenia Ilyinskaya, Thomas R. Walter
Orals
| Thu, 11 Apr, 08:30–12:30
 
Room -2.21
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X2