Side Events
Disciplinary Sessions
Inter- and Transdisciplinary Sessions

Session programme


SSS – Soil System Sciences

Programme group chairs: Rafael Angulo-Jaramillo, Jacqueline Hannam, Nadezda Vasilyeva, Jose Alfonso Gomez, Paolo Tarolli, Claudio Zaccone, Claudio Zaccone, Encarnación Taguas, Daniela Sauer, Elena Korobova, Sebastian Doetterl, Raúl Zornoza, David C. Finger

SSS8 – Soil Pollution and Reclamation


Mining and industrial activities, particularly in the past, have left waste deposit sites and contaminated former fertile soils in many countries. Due to future shortage of arable areas as well as raw materials, the recovery of raw materials as well as remediation for future agricultural utilization, and prevention of hazardous leachings to the groundwater continues to be a goal of current and future research. Bioremediation and biomining techniques are considered as cost-effective and environmentally friendly, “green” technologies for the in situ restoration of the health and productive capacity of soils, mitigating environmental impacts of impaired soils, and last but not least, the gain of raw materials (e.g. by phytoextraction). However, optimization of these technologies requires a sound understanding of related biogeochemical processes and the consequences of site management.
This session aims to bring together contributions of all aspects of biomining and bioremediation research including the effects of rhizosphere processes, soil management and microbial leaching.
This includes, among others:

-advances in the understanding of functions of plant-soil-microbe interactions in the rhizosphere

-factors influencing the mobility and leaching of target elements or soil contaminants

-distribution of target elements inside the organisms

-final recovery of metals from accumulator plants or leachates

We welcome presentations of laboratory and field research results as well as theoretical studies. We intend to bring together scientists from multiple disciplines. Young researchers are especially encouraged to submit their contributions.

Co-organized as BG2.57
Convener: Oliver Wiche | Co-conveners: Fabian Giebner, Christin Moschner, Balázs Székely
| Tue, 09 Apr, 16:15–18:00
PICO spot 3

Pre-anthropogenic evolution of biosphere based on mechanisms of struggle for life created dynamic stability of the Earth ecosystems comprised of species with maximum matching to all the biogeochemical niches. Intellect specific of only one species changed biosphere to support civilizations but at the same time interfered natural processes and transformed the state of the organized natural biogeochemical cycles. As a result, soil as the main basis of nutrients and biomass production is subjected to physical and chemical degradation and needs reclamation. To survive and develop as a species, Man should escape short-term decisions and use his knowledge and scientifically based approaches to find the ways for stable existence in changeable noosphere.
The main idea of the present session is to discuss the problem of optimization of eco-geochemical state of anthropized soil to improve the quality of agricultural and forestry production and, finally, human health in conditions of inevitable man-made contamination.
We invite specialists in soil science and all stakeholders to:
1) present their ideas and experience in assessment of the ecological and health risk due to soil contamination in their regions, countries and localities;
2) discuss how we should evaluate soil contamination in conditions of: a) natural nutrients deficiency; b) soil over-fertilization; soil pollution;
3) clear up what levels of elements concentration may be treated as pollution and demonstrate theoretical approaches and modern technologies that may be considered optimum in reclamation of technogenically transformed soils to improve their ecological quality and to contribute to human health.

Co-organized as BG2.36/HS11.52
Convener: Elena Korobova | Co-conveners: Maria Manuela Abreu, Jaume Bech, Erika Santos
| Mon, 08 Apr, 14:00–15:45
Room -2.20
| Attendance Mon, 08 Apr, 16:15–18:00
Hall X1

Sorbent materials have various environmental applications, i.e. water filtration, separation, and purification. Rapid progress in nanotechnology and a new focus on biomass-based instead of non-renewable starting materials have produced a wide range of novel engineered sorbents. The development and evaluation of novel sorbents requires a multidisciplinary approach encompassing environmental, nanotechnology, physical, analytical, and surface chemistry. The necessary evaluations encompass not only the efficiency of these materials to remove contaminants from surface waters and groundwater, industrial wastewater, polluted soils and sediments, etc., but also the potential side-effects of their environmental applications. Contributions examining the use of novel sorbents for environmental remediation are welcome. More specifically the contributions may be focused on:

• biosorbents: characterization; evaluation;
• biochars: process optimization; physically and chemically activated biochars;
• reactive sorbents: development; characterization; evaluation;
• nanotechnology based sorbents: development; characterization; evaluation;
• development of sorbents, reactive sorbents, or catalysts from geomaterials;
• sorbent-based in-situ remediation of contaminated soils, aquifers and sediments: experimental work; field studies;
• ecotoxicity of novel sorbents.

Convener: Ioannis Manariotis | Co-conveners: Hrissi K. Karapanagioti, Vasileios Anagnostopoulos, David Werner
| Wed, 10 Apr, 16:15–18:00
PICO spot 3
SSS8.5 Media

The world annual consumption of pesticides has amounted to 2.7 × 106 tons in recent years. Agricultural land is the first recipient of pesticides after its application; even if the pesticides are applied in accordance with the regulations, only a minor amount reaches its objectives, while the rest represent possible environmental contaminants and short or long-term harvest products, with a wide range of possible negative impacts. For many pesticides or their degradation products, soils become the non-point source of groundwater contamination (leaching of soluble compounds and compounds linked to colloids) and / or surface water (runoff of soluble compounds, compounds bound to colloids and soil particles, transport from groundwater). On the other hand, these pesticides represent a potential risk for soil biota, such as nematodes, microorganisms and plants.
The purpose of the session is to share the knowledge generated by researchers whose interest lies in the role of soil in the destination and the behavior of emerging contaminants, including pesticides.
This session will include contributions from different areas:
1. Development, validation and application of analytical methods for pesticides and their degradation / transformation products in water, soil, sediment, air and food samples for direct consumption or fresh consumption.
2. Studies of adsorption, desorption, physical transport, synergies, etc. between soil and organic pollutants of agricultural production (pesticides, pharmaceutical products, other emerging pollutants, which favor their environmental availability.
3. Field tests, monitoring and modeling of environmental destinations of pesticides.
4. Effects of mixtures of pesticides and pesticides on non-target organisms and interactions of various classes of pesticides detected in the natural environment.
5. Evaluation of risks of environmental contamination by pesticides.
6. Assessments regarding climate change on the fate and behavior of pesticides.
The scientific session “Soils as a non-point source of contamination by pesticides or their degradation products” will provide an opportunity to research teams working in different parts of the world to discuss their findings within the settings of a large conference.

Co-organized as BG2.67/HS8.3.15
Convener: Virginia Aparicio | Co-conveners: Mikhail Borisover, Glenda Garcia-Santos, Violette Geissen, Manfred Sager
| Mon, 08 Apr, 16:15–18:00
Room -2.20
| Attendance Mon, 08 Apr, 10:45–12:30
Hall X1

The session gathers geoscientific aspects such as dynamics, reactions, and environmental/health consequences of radioactive materials that are massively released accidentally (e.g., Fukushima and Chernobyl nuclear power plant accidents, wide fires, etc.) and by other human activities (e.g., nuclear tests).

The radioactive materials are known as polluting materials that are hazardous for human society, but are also ideal markers in understanding dynamics and chemical/biological/electrical reactions chains in the environment. Thus, the radioactive contamination problem is multi-disciplinary. In fact this topic involves regional and global transport and local reactions of radioactive materials through atmosphere, soil and water system, ocean, and organic and ecosystem, and its relation with human and non-human biota. The topic also involves hazard prediction and nowcast technology.

By combining >30 year (halftime of Cesium 137) monitoring data after the Chernobyl Accident in 1986, >5 year dense measurement data by the most advanced instrumentation after the Fukushima Accident in 2011, and other events, we can improve our knowledgebase on the environmental behavior of radioactive materials and its environmental/biological impact. This should lead to improved monitoring systems in the future including emergency response systems, acute sampling/measurement methodology, and remediation schemes for any future nuclear accidents.

The following specific topics have traditionally been discussed:
(a) Atmospheric Science (emissions, transport, deposition, pollution);
(b) Hydrology (transport in surface and ground water system, soil-water interactions);
(c) Oceanology (transport, bio-system interaction);
(d) Soil System (transport, chemical interaction, transfer to organic system);
(e) Forestry;
(f) Natural Hazards (warning systems, health risk assessments, geophysical variability);
(g) Measurement Techniques (instrumentation, multipoint data measurements);
(h) Ecosystems (migration/decay of radionuclides).

The session consists of updated observations, new theoretical developments including simulations, and improved methods or tools which could improve observation and prediction capabilities during eventual future nuclear emergencies. New evaluations of existing tools, past nuclear contamination events and other data sets also welcome.

Public information:
The release of radioactive materials by human activity (such as nuclear accidents) are both severe hazard problem as well as ideal markers in understanding geoscience at all level of the Earth because it cycles through atmosphere, soil, plant, water system, ocean, and lives. Therefore, we must gather knowledge from all geoscience field for comprehensive understanding.

Co-organized as GI2.7/AS4.43/BG1.39/ERE5.6/GMPV6.4/HS11.65/NH8.7/OS4.33/SSS8.7
Convener: Masatoshi Yamauchi | Co-conveners: Nikolaos Evangeliou, Yasunori Igarashi, Liudmila Kolmykova, Daisuke Tsumune
| Mon, 08 Apr, 14:00–15:45
Room N1
| Attendance Mon, 08 Apr, 16:15–18:00
Hall X1