Union-wide
Inter- and Transdisciplinary Sessions
Disciplinary sessions AS–GM
Disciplinary sessions GMPV–TS

Session programme

SM3

SM – Seismology

Programme group chair: Philippe Jousset

SM3 – Seismic Hazard Assessment (earthquake forecasting, ground-motion modelling, seismic and/or multihazard probabilistic assessment)

Programme group scientific officer: Fabrice Cotton

SM3.1

We focus on the aspect of combining frontier science with high-density ground and building measurements and large open data pools to better predict ground-shaking and building behavior but also to better quantify and visualize the potential impact of earthquakes.
The aim of this session is to give an up-to-date view of new ideas and methods using dense seismological networks, the latest generation of ground-motion databases, data-mining analyses, crowd-sourcing data, and smart-city technologies to evaluate ground-shaking and assess earthquake hazard and risk.
We invite papers related to:
(1) Site-specific and ultra-high-density earthquake ground-motion prediction (e.g. non-ergodic ground-motion models, use of machine learning in engineering seismology, high-resolution site conditions)
(2) Scenario-based or probabilistic earthquake hazard and risk assessment
(3) Exposure models from open data (e.g. use of OpenStreetMap data)
(4) Structural health monitoring of buildings for dynamic vulnerability modeling during earthquake sequences or dynamic exposure modeling
(5) Transparent and innovative hazard/risk visualization methods

Share:
Co-organized by NH4
Convener: Fabrice Cotton | Co-conveners: Kuo-Fong Ma, Danijel Schorlemmer
Displays
| Attendance Wed, 06 May, 08:30–10:15 (CEST)
SM3.2

The analysis of the spatiotemporal evolution of seismicity and the development of physical
and statistical models of seismicity have substantially improved our understanding of
earthquake occurrence. Such endeavor has considerably benefited from the availability of
new techniques and high-resolution, high-quality datasets. However, our forecasting skill of
large earthquake is still bounded to the "low-probability" environment. Additional
challenges are posed by issues such as missing data, catalog quality, biases affecting the
estimation of model parameters.
This session focuses on the most recent developments of models and techniques for
seismicity analysis, together with the main issues we need to be aware of. Specifically, it
will address the following topics:
• Advances in earthquake forecasting at different time scales;
• Advances in the analysis of spatiotemporal properties of seismicity;
• Earthquake statistics;
• Challenges affecting the analysis and modeling of spatiotemporal earthquake
occurrence;
• Future perspectives in seismicity modeling;
• Is there life beyond ETAS?

Share:
Co-organized by NH4
Convener: Angela StalloneECSECS | Co-conveners: Ilaria SpassianiECSECS, Sebastian Hainzl, Jiancang Zhuang
Displays
| Attendance Mon, 04 May, 10:45–12:30 (CEST)
ITS1.8/SSS1.1

Citizen science (the involvement of the public in scientific processes) is gaining momentum across multiple disciplines, increasing multi-scale data production on biodiversity, earthquakes, weather, climate, health issues and food production, amongst others, that is extending the frontiers of knowledge. Successful participatory science enterprises and citizen observatories can potentially be scaled-up in order to contribute to larger policy strategies and actions (e.g. the European Earth Observation monitoring systems), for example to be integrated in GEOSS and Copernicus. Making credible contributions to science can empower citizens to actively participate as citizen stewards in decision making, helping to bridge scientific disciplines and promote vibrant, liveable and sustainable environments for inhabitants across rural and urban localities.
Often, citizen science is seen in the context of Open Science, which is a broad movement embracing Open Data, Open Technology, Open Access, Open Educational Resources, Open Source, Open Methodology, and Open Peer Review to transparently publish and share scientific research - thus leveraging Citizen Science and Reproducible Research. Both open science and citizen science pose great challenges for researchers to facilitate effective participatory science. To support the goals of the various Open Science initiatives, this session looks at what is possible and what is applied in geosciences. The session will showcase how various stakeholders can benefit from co-developed participatory research using citizen science and open science, acknowledging the drawbacks and highlighting the opportunities available, particularly through applications within mapping, technology, policy, economy, practice and society at large. Learning from bottom-up initiatives, other disciplines, and understanding what to adopt and what to change can help synergize scientific disciplines and empower participants in their own undertakings and new initiatives.

We want to ask and find answers to the following questions:
Which approaches can be used in Earth, Planetary and Space Sciences?
What are the biggest challenges in bridging between scientific disciplines and how to overcome them?
What kind of participatory citizen scientist involvement and open science strategies exist?
How to ensure transparency in project results and analyses?
What kind of critical perspectives on the limitations, challenges, and ethical considerations exist?

Share:
Co-organized by EOS2/CL5/HS12/SM3
Convener: Taru Sandén | Co-conveners: Lorenzo Bigagli, Daniel DörlerECSECS, Martin Hammitzsch, Florian HeiglECSECS, Eloise Biggs, Julia FöllmerECSECS
Displays
| Attendance Mon, 04 May, 08:30–12:30 (CEST)
ITS1.7/SM3.5

The International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) senses the solid Earth, the oceans and the atmosphere with a global network of seismic, infrasound, and hydroacoustic sensors as well as detectors for atmospheric radioactivity. The primary purpose of the IMS data is for nuclear explosion monitoring regarding all aspects of detecting, locating and characterizing nuclear explosions and their radioactivity releases. On-site verification technologies apply similar methods on smaller scales as well as geophysical methods such as ground penetrating radar and geomagnetic surveying with the goal of identifying evidence for a nuclear explosion close to ground zero. Papers in this session address advances in the sensor technologies, new and historic data, data collection, data processing and analysis methods and algorithms, uncertainty analysis, machine learning and data mining, experiments and simulations including atmospheric transport modelling. This session also welcomes papers on applications of the IMS and OSI instrumentation data. This covers the use of IMS data for disaster risk reduction such as tsunami early warning, earthquake hazard assessment, volcano ash plume warning, radiological emergencies and climate change related monitoring. The scientific applications of IMS data establish another large range of topics, including acoustic wave propagation in the Earth crust, stratospheric wind fields and gravity waves, global atmospheric circulation patterns, deep ocean temperature profiles and whale migration. The use of IMS data for such purposes returns a benefit with regard to calibration, data analysis methods and performance of the primary mission of monitoring for nuclear explosions.

Share:
Co-organized by AS4/NH10/OS4
Convener: Martin Kalinowski | Co-conveners: Lars Ceranna, Yan Jia, Peter Nielsen, Ole Ross
Displays
| Attendance Mon, 04 May, 08:30–12:30 (CEST)
ITS1.4/HS4.8

The Sendai Framework for disaster risk reduction (SFDRR) and its seventh global target recognizes that increased efforts are required to develop risk-informed and impact-based multi-hazard early warning systems. Despite significant advances in disaster forecasting and warning technology, it remains challenging to produce useful forecasts and warnings that are understood and used to trigger early actions. Overcoming these challenges requires understanding of the reliability of forecast tools and implementation barriers in combination with the development of new risk-informed processes. It also requires a commitment to create and share risk and impact data and to co-produce impact-based forecasting models and services. To deal with the problem of coming into action in response to imperfect forecasts, novel science-based concepts have recently emerged. As an example, Forecast-based Financing and Impact-based Multi-Hazard Early Warning Systems are currently being implemented operationally by both governmental and non-governmental organisations in several countries as a result of increasing international effort by several organizations such as the WMO, World Bank, IFRC and UNDRR to reduce disaster losses and ensuring reaching the objectives of SFDRR. This session aims to showcase lessons learnt and best practices on impact-based multi-hazards early warning system from the perspective of both the knowledge producers and users. It presents novel methods to translate forecast of various climate-related and geohazards into an impact-based forecast. The session addresses the role of humanitarian agencies, scientists and communities at risk in creating standard operating procedures for economically feasible actions and reflects on the influence of forecast uncertainty across different time scales in decision-making. Moreover, it provides an overview of state-of-the-art methods, such as using Artificial Intelligence, big data and space applications, and presents innovative ways of addressing the difficulties in implementing forecast-based actions. We invite submissions on the development and use of operational impact-based forecast systems for early action; developing cost-efficient portfolios of early actions for climate/geo-related impact preparedness such as cash-transfer for droughts, weather-based insurance for floods; assessments on the types and costs of possible forecast-based disaster risk management actions; practical applications of impact forecasts.

Share:
Co-organized by AS4/NH9/SM3
Convener: Marc van den Homberg | Co-conveners: Bapon Fakhruddin, Andrea Ficchì, Gabriela Guimarães Nobre, Annegien Tijssen, David MacLeod, Maurine Ambani, Alison SneddonECSECS
Displays
| Attendance Thu, 07 May, 08:30–10:15 (CEST)
NH4.2

The scientific base of the process of seismic risk mitigation involves various seismic hazard models, developed at different time scales and by different methods, as well as the use of information as complete and reliable as possible about past seismicity. Some recent large earthquakes caused extensive damage in areas where some models indicated low seismic hazard, leading to an increased demand for criteria to objectively assess how well seismic hazard models are performing. This session aims to tackle theoretical and implementation issues, as well as aspects of science policy and diplomacy, which are all essential elements towards effective disasters mitigation, and include:
⇒ earthquake hazard and risk estimation at different time and space scales, including extreme seismic events;
⇒ methods for assessing performances of seismic hazard and risk models;
⇒ discussions of the pros and cons of deterministic, neo-deterministic, probabilistic, and intensity-based seismic hazard assessments
⇒ long-term evidences about past great earthquakes, as well as evidences of lack of them, including unconventional seismological observations (e.g. impact on caves, ancient constructions and other deformations evidences);
⇒ earthquake hazard assessment in terms of macro-seismic intensity;
⇒ seismic hazard and risk assessment and their temporal variability, including the contribution of aftershocks and earthquake-induced cascading effects (e.g. landslides, tsunamis, etc).
We invite contributions related to: hazard and risk assessment methods and their performance in applications; verification methods that are suitable to quantify seismic hazard estimates and that can be applied to limited and/or heterogeneous observations (ranging from recent records of ground shaking parameters to past intensity data); seismic hazard/risk monitoring and modeling; and risk communication and mitigation.
The session will provide an opportunity to share best practices and experience gained with different methods, highlighting existing gaps and future research directions. Also, the session would like to discuss issues related to disaster science policy and diplomacy, providing opportunities to advance our understanding of disaster risk in "all its dimensions of vulnerability, capacity, exposure of persons and assets, hazard characteristics and the environment", while simultaneously building bridges between nations, where relationships could otherwise be strained.

Share:
Co-organized by SM3, co-sponsored by IUGG
Convener: Antonella Peresan | Co-conveners: Katalin Gribovszki, Yekaterina KontarECSECS, Katerina Orfanogiannaki, Elisa Varini
Displays
| Attendance Wed, 06 May, 08:30–10:15 (CEST)
NH4.1

The study of active faults and deformation of the Earth's surface has made, and continues to make, significant contributions to our understanding of earthquakes and the assessment of seismic related hazard. Active faulting may form and deform the Earth's surface so that records are documented in young sediments and in the landscape. Field studies of recent earthquake ruptures help to constrain earthquake source parameters and to identify previously unknown active structures. The insights gleaned from recent earthquakes can be applied to study past earthquakes. Paleoseismology and related disciplines such as paleogeodesy and paleotsunami investigations still are the primary tools to establish earthquake records that are long enough to determine recurrence intervals and long-term deformation rates for active faults. Multidisciplinary data sets accumulated over the years have brought unprecedented constraints on the size and timing of past earthquakes and allow deciphering shorter-term variations in fault slip rates or seismic activity rates, as well as the interaction of single faults within fault systems. This wide range of methods leads to a wide range of uncertainties in the definition of what is an active fault, which parameters are entered in fault databases, which consequently conditions the strategy used to transfer earthquake-fault data into fault models suitable for probabilistic SHA. Which uncertainty can be quantified by geologists and how can it be made easily accessible for proper usage in hazard computation is a fundamental question that the FAULT2SHA ESC working group (www.fault2sha.net) is attempting to tackle.
This FAULT2SHA session aims to spark a discussion between field earthquake geologists, crustal deformation modellers and fault modellers/seismic hazard practitioners around fault-related uncertainty issues and their inclusion in fault-based PSHA. We welcome contributions describing and critically discussing approaches used to study active faults as well as presentations discussing existing efforts on how fault-related information is translated into dedicated databases of primary surface information and then into 3D fault models. We particularly encourage contributions related to local studies of fault systems where specific issues could be debated on either fault data collection aspects, databases questions and/or fault hazard modelling

Share:
Co-organized by SM3/TS5
Convener: Oona Scotti | Co-conveners: Esther Hintersberger, Bruno Pace
Displays
| Attendance Fri, 08 May, 14:00–15:45 (CEST)
NH9.11

This session addresses knowledge exchange between researchers, the public, policy makers, and practitioners about natural hazards. Although we welcome all contributions in this topic, we are particularly interested in: (i) The communication (by scientists, engineers, the press, civil protection, government agencies, and a multitude other agencies) of natural hazards risk and uncertainty to the general public and other government officials; (ii) Approaches that address barriers and bridges in the science-policy-practice interface that hinder and support application of hazard-related knowledge; (iii) The teaching of natural hazards to university and lower-level students, using innovative techniques to promote understanding. We also are specifically interested in distance education courses on themes related to hazard and risk assessment, and disaster risk management, and in programmes for training in developing countries. We therefore solicit abstracts, particularly dynamic posters, on all aspects of how we communicate and educate the better understanding of natural hazards. We plan on having a PICO session to ensure a lively combination of discussion and poster presentation.

Share:
Co-organized by EOS7/GM12/HS13/SM3
Convener: Joel Gill | Co-conveners: Bruce D. Malamud, Alison SneddonECSECS, Adam Switzer, Faith TaylorECSECS
Displays
| Attendance Wed, 06 May, 16:15–18:00 (CEST)