GMPV8.1 | Volcanic processes: tectonics, deformation, geodesy, unrest (20-year anniversary)
EDI
Volcanic processes: tectonics, deformation, geodesy, unrest (20-year anniversary)
Co-organized by G3/GD2/NH2/TS10
Convener: Valerio Acocella | Co-conveners: Agust Gudmundsson, Thorbjorg Agustsdottir, Michael Heap, Sigurjon Jonsson, Virginie Pinel
Orals
| Fri, 28 Apr, 08:30–12:25 (CEST)
 
Room D1
Posters on site
| Attendance Fri, 28 Apr, 16:15–18:00 (CEST)
 
Hall X2
Orals |
Fri, 08:30
Fri, 16:15
The session deals with the documentation and modelling of the tectonic, deformation and geodetic features of any type of volcanic area, on Earth and in the Solar System. The focus is on advancing our understanding on any type of deformation of active and non-active volcanoes, on the associated behaviours, and the implications for hazards. We welcome contributions based on results from fieldwork, remote-sensing studies, geodetic and geophysical measurements, analytical, analogue and numerical simulations, and laboratory studies of volcanic rocks.
Studies may be focused at the regional scale, investigating the tectonic setting responsible for and controlling volcanic activity, both along divergent and convergent plate boundaries, as well in intraplate settings. At a more local scale, all types of surface deformation in volcanic areas are of interest, such as elastic inflation and deflation, or anelastic processes, including caldera and flank collapses. Deeper, sub-volcanic deformation studies, concerning the emplacement of intrusions, as sills, dikes and laccoliths, are most welcome.
We also particularly welcome geophysical data aimed at understanding magmatic processes during volcano unrest. These include geodetic studies obtained mainly through GPS and InSAR, as well as at their modelling to imagine sources.

The session includes, but is not restricted to, the following topics:
• volcanism and regional tectonics;
• formation of magma chambers, laccoliths, and other intrusions;
• dyke and sill propagation, emplacement, and arrest;
• earthquakes and eruptions;
• caldera collapse, resurgence, and unrest;
• flank collapse;
• volcano deformation monitoring;
• volcano deformation and hazard mitigation;
• volcano unrest;
• mechanical properties of rocks in volcanic areas.

Orals: Fri, 28 Apr | Room D1

Chairpersons: Valerio Acocella, Agust Gudmundsson, Thorbjorg Agustsdottir
08:30–08:35
08:35–08:45
|
EGU23-6118
|
On-site presentation
Paul Wessel, Tony Watts, Chong Xu, Brian Boston, Phillip Cilli, Robert Dunn, and Donna Shilington

The Hawaii-Emperor seamount chain stretches westward from the “Big Island” of Hawaii for over 6000 km until the oldest part of the Emperor chain is subducted at the Kuril and Aleutian trenches. Still regarded as the iconic hotspot-generated seamount chain it has been sampled, mapped, and studied to give insights into numerous oceanic phenomena, such as seamount and volcano formation and associated intraplate magma budgets, the past absolute motions of the Pacific plate and the drift of the Hawaiian plume, and the thermal and mechanical properties of oceanic lithosphere. Much early work on determining the flexural rigidity and equivalent elastic plate thickness that supports the large volcano loads that comprise the chain was focussed on the Hawaiian Ridge, with a major multichannel seismic expedition to the Hawaiian Islands in 1982 providing clear and direct evidence of plate flexure, as well as the indirect effect this deformation has on Earth’s gravity field. Numerous studies have since followed. However, the older part of the chain, beyond the ~50 Ma “bend”, has been much less well studied due to its remoteness, but recent expeditions have provided new marine seismic data to allow an estimation of elastic thickness along the Emperor chain and how they compare to the information we have along the Hawaiian Ridge. Here, we present preliminary work on determining the elastic thickness beneath the Emperor Seamounts. Unlike the Hawaiian Ridge, where the age of the lithosphere at the time of loading (i.e., the difference in age between the underlying seafloor and the formation age of a seamount or oceanic island) is remarkably constant, along the Emperor chain there are major variations in the age of loading, compounded by higher uncertainty due to limited seamount age sampling and the chain’s location within the Cretaceous Quiet Zone. Thus, models with variable elastic thickness as a function of location along the Emperor chain are required. In this presentation, we discuss several models that seek to account for the new seismic imaging of the top and base of flexed oceanic crust (i.e. Moho) at Jimmu guyot while at the same time honouring the characteristic gravimetric signature of the Emperor seamount edifices and their flanking moats. The Optimal Regional Separation (ORS) method is used to isolate the flexural loads, while seismic tomography and different velocity/density relations are explored for assigning suitable load and infill densities that vary spatially, and we search for optimal density and elastic parameters which minimize the misfit to both the residual gravity as well as the seismically observed flexure in the vicinity of Jimmu guyot. The first-order result is a clear thinning of the elastic thickness as we move from south to north: the implications of which we examine here for the tectonic evolution of the northwest Pacific Ocean and the long-term (>106 a) mechanical properties of oceanic lithosphere.

How to cite: Wessel, P., Watts, T., Xu, C., Boston, B., Cilli, P., Dunn, R., and Shilington, D.: Variation in Elastic Thickness along the Emperor Seamount Chain, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6118, https://doi.org/10.5194/egusphere-egu23-6118, 2023.

08:45–08:55
|
EGU23-7374
|
ECS
|
On-site presentation
Yilin Yang, Freysteinn Sigmundsson, Halldór Geirsson, Chiara Lanzi, Sigrún Hreinsdóttir, Vincent Drouin, Xiaohui Zhou, and Yifang Ma

Correct estimation of the timing of velocity changes (break points) and associated uncertainties in ground deformation observed with Global Navigation Satellite System (GNSS) coordinate time series is crucial for understanding various Earth processes and how they may couple with each other. To simultaneously estimate break points, velocity changes and their uncertainties, we implement Bayesian modeling with Markov Chain Monte Carlo algorithm for GNSS time series. As the presence of white noise (WN) and time-correlated flicker noise (FLN) in GNSS time series was found to affect velocity estimation, synthetic data experiments are first conducted to investigate their effect on break point estimation. The results indicate that reliable estimates are obtained only when the value of velocity change is larger than FLN amplitude. With the presence of WN and FLN, whose amplitudes are one twentieth and one fourth of the velocity-change value, the estimation bias and uncertainty are <0.5 mm/yr and ~5 mm/yr for velocity change, and <30 d and ~100 d for break point, respectively. In this case the uncertainty is one magnitude larger than that with only the presence of WN. Then the proposed method is applied to model two velocity changes detected manually during 2014-2015 at the Krafla volcanic system, North Volcanic Zone (NVZ), Iceland. Similar accuracy and precision as the synthetic data experiments can be expected in east component of the real data as the velocity-change values are 6.9-16.5 times of the WN amplitudes and 2.5-4.0 times of the FLN amplitudes from preliminary analysis. Considering the uncertainty estimated with 95% confidence interval, the first break point at the three continuous GNSS stations in the Krafla area suggests a change in extension pattern across the NVZ prior to the beginning of a major rifting episode that started on 16 August 2014 at the Bárðarbunga volcanic system, which is ~130 km south of Krafla. The first break point at KRAC station in the Krafla caldera occurs on 2-4 July 2014, with 95% confidence interval being 4 May to 13 August 2014. The first velocity change is about 7.6 to 9.8 mm/yr to the west with its uncertainty ranging from 4.5 to 14.4 mm/yr. The velocities approximately resume to the original level after the second change at the end of 2014 or early 2015, whose chronological relationship with the end of Bárðarbunga-Holuhraun episode cannot be asserted because of uncertainties. The results may indicate coupling of activities between the volcanic systems in the NVZ via processes not well understood. Further work is needed to confirm these results and their significance.

How to cite: Yang, Y., Sigmundsson, F., Geirsson, H., Lanzi, C., Hreinsdóttir, S., Drouin, V., Zhou, X., and Ma, Y.: Bayesian modeling of velocity break points in GNSS time series and the effect of noise on their estimation: Did velocity anomalies in the Krafla volcanic system, north Iceland, precede the Bárðarbunga-Holuhraun 2014-2015 rifting episode?, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7374, https://doi.org/10.5194/egusphere-egu23-7374, 2023.

08:55–09:05
|
EGU23-8378
|
ECS
|
On-site presentation
Chiara Lanzi, Freysteinn Sigmundsson, Halldór Geirsson, Michelle Maree Parks, and Vincent Drouin

Localized ground deformation at volcanoes in extensional setting may occur because of strain localization. The magmatic system of a volcano with its liquid magma, magma mush, and hot crust will cause a rheological anomaly, where material properties may be very different from surrounding crust and mantle. Numerical models based on the Finite Element Method (FEM) are used to explore ground deformation at volcanoes in extensional environments, considering realistic volcano models with heterogeneous multi-layered structure, with both elastic and viscoelastic rheology. The effects of localized lateral and vertical variations in terms of geometry and material properties of the crust are explored, in a model domain undergoing stretching applied perpendicular to the lateral domain boundaries of one and two-layers model (at a rate of 17.4 mm/yr applied in our models). A one-layer model displays the same elastic feature throughout the whole domain except for a localized upper volume with lower elastic properties, compared to the surrounding crust, to simulate the shallow magmatic system. In a two-layer model, the top elastic layer overlies a viscoelastic layer that locally reaches shallower levels to symbolize the deep magmatic system beneath the shallow low-rigidity volume previously introduced. A localized surface subsidence signal is a characteristic feature of magmatic system with a large body of localized viscoelastic rheology at shallow depth. The subsidence signal is strongly dependent on the viscosity and volume of the up-doming viscoelastic material. A model with viscosity of 5 × 1019 Pa s in the up-doming material, and a 7 – 15 km-thick elastic layer, show a small subsidence rate, ~0.1 – 0.4 mm/yr. Our models show an increase of the localized subsidence rate, from 1.9 to 5.5 mm/yr, as the viscosity decreases from 1018 Pa s to 1016 Pa s in the up-doming material. Lower viscosities (<1016 Pa s) show no further change in subsidence rate when compared to the 1016 Pa s solution. We apply three-dimensional FEM models to improve understanding of the subsidence at the Krafla and Askja volcanic systems (1989-2018 and 1983-2018, respectively) in the Northern Volcanic Zone of Iceland. The two subsiding areas (roughly 9 × 10 km each) lie in about 50 km-wide zone which marks the North America-Eurasia divergent plate boundary. The rate of subsidence at Krafla was ~1.3 cm/yr in 1993-2000 and slowed down to 3-5 mm/yr in 2006-2015. The rate of subsidence at Askja decayed more slowly than Krafla. During the 1983-1998 the subsidence rate was ~5 cm/yr; in 2000-2009, geodetic monitoring showed that the subsidence slowed down to ~2.5 cm/yr. Comparison of FEM models to geodetic data in North Iceland suggests that plate divergence processes may account for part of the observed subsidence, dependent on how extensive rheological anomalies in relation to magma are beneath the volcanoes.

How to cite: Lanzi, C., Sigmundsson, F., Geirsson, H., Maree Parks, M., and Drouin, V.: Strain Localization at Volcanoes Undergoing Extension: Investigating Long-term Subsidence at Krafla and Askja in North Iceland, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8378, https://doi.org/10.5194/egusphere-egu23-8378, 2023.

09:05–09:15
|
EGU23-7218
|
ECS
|
On-site presentation
|
Noemi Corti, Fabio Luca Bonali, Elena Russo, Federico Pasquarè Mariotto, Agust Gudmundsson, Kyriaki Drymoni, Alessandro Tibaldi, Rosario Esposito, and Alessandro Cavallo

Understanding the factors that affect dike propagation and dike arrest in the shallow crust, and subsequently control the associated dike-induced surface deformation is fundamental for volcanic hazard assessment. In this work, we focus on two dike segments associated with the Younger Stampar eruption (1210-1240 AD) on the Reykjanes Peninsula (SW Iceland). Both segments (spaced 30 m apart horizontally) were emplaced in the same heterogeneous crustal segment composed of lavas and tuffs. Here, the first dike to be emplaced fed a lava flow, while the second dike became arrested 5 m below the free surface without producing any brittle surface deformation. Therefore, this area represents an ideal case study to analyse the conditions that promote dike arrest or, alternatively, dike propagation to the surface. The outcrop also provides further examples of the absence of brittle deformation around a dike arrested just below the surface. 

For this work, we collected structural data from the dikes and the heterogeneous layers as well as from the nearby crater rows associated with the Stampar eruptions. We integrated our field observations with a high-resolution 3D model reconstructed from UAV-collected pictures through Structure-from-Motion photogrammetric techniques. These 3D model data were then used as inputs for Finite Element Method (FEM) numerical models through the COMSOL Multiphysics® software (v5.6). We performed a range of sensitivity tests to investigate the role of dike overpressure (Po= 2 - 4 MPa), the mechanical properties of the host rock (e.g., Young’s modulus), and the layering of the crustal segment subject to horizontal extension and compression boundary conditions.

Our multidisciplinary structural analyses show that the Stampar crater rows is consistent in strike with the orientation of the volcanic system of the Reykjanes Peninsula, as well as the other historic and prehistoric eruptive fissures in the region. Furthermore, our numerical models indicate that the layering and the dissimilar mechanical properties of the host rock contributed to the arrest of non-feeder dike and the associated absence of brittle deformation at and above its tip. In particular, the layering (stiff lava flow on top of soft tuff) magnifies (concentrates) the compressive stress induced by the earlier feeder dike which cuts through an existing lower part of the surface lava flow. The horizontal compressive stress, in turn, is one reason for the very low overpressure of the non-feeder when it approached the tuff-lava contact, hence its arrest at the contact. Our studies can be applied to other dike-fed volcanic areas in Iceland and worldwide.

How to cite: Corti, N., Bonali, F. L., Russo, E., Pasquarè Mariotto, F., Gudmundsson, A., Drymoni, K., Tibaldi, A., Esposito, R., and Cavallo, A.: Dike-arrest vs dike-propagation and associated surface stresses: an example from the Younger Stampar eruption (13th century), Reykjanes Peninsula, SW Iceland, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7218, https://doi.org/10.5194/egusphere-egu23-7218, 2023.

09:15–09:25
|
EGU23-6230
|
ECS
|
On-site presentation
Kyriaki Drymoni, Alessandro Tibaldi, Federico Pasquaré Mariotto, and Fabio Luca Bonali

Dykes (Mode I extension fractures) supply magma from deep reservoirs to the surface and subject to their propagation paths, they can sometimes reach the surface and feed volcanic eruptions. Most of the times they mechanically stall in the heterogeneous crust or deflect through pre-existing fractures forming sills. Although several studies have explored dyking in heterogeneous regimes, the conditions under which dykes propagate in glacial-volcanotectonic regimes remain unclear.

Here, we coupled field observations with FEM numerical modelling using the software COMSOL Multiphysics (v5.6) to explore the mechanical and geometrical conditions that promote (or not), dyke-sill propagation in glacial-tectonic conditions. We used as a field example the Stardalur cone sheet-laccolith system, located in the Esja peninsula proximal to the western rift zone. The laccolith is composed of several vertical dykes that bend into sills and form a unique stacked sill ‘flower structure’. We modelled a heterogeneous crustal segment composed of lavas (top) and hyaloclastites (bottom). We then studied the emplacement of a dyke with varied overpressure values (Po = 1-10 MPa) and regional extension (Fe = 0.5-3 MPa) loading conditions at the lava/hyaloclastite contact. In the second stage, we added an ice cap as a body load to explore dyking subject to unloading due to glacier thickness variations (0-1 km).

Our results have shown that the presence of the ice cap can affect the dyke-sill propagation and the spatial accumulation of tensile and shear stresses below the cap. The observed field structure in non-glacial regimes has been formed either due to the mechanical contrast (Young’s modulus) of the studied contact, a compressional regime due to pre-existing dyking or faulting, or finally, high overpressure values (Po  ≥ 5 MPa). Instead, in a glacial regime, the local extensional stress field below the ice cap encourages the formation of the laccolith when the ice cap becomes thinner (lower vertical loads). Our models can be applied to universal volcanoes related to glacier thickness variation and sill emplacement.

How to cite: Drymoni, K., Tibaldi, A., Pasquaré Mariotto, F., and Bonali, F. L.: Dyke-sill propagation in glacial-volcanotectonic regimes: The case study of Stardalur laccolith, SW Iceland, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6230, https://doi.org/10.5194/egusphere-egu23-6230, 2023.

09:25–09:35
|
EGU23-13854
|
solicited
|
On-site presentation
Janine Kavanagh and Caitlin Chalk

The propagation mechanics and fluid dynamics of magma-filled fractures, such as dykes and sills, are fundamental to the generation of sub-surface signals which indicate magma is on the move. Dykes play a major role transporting magma from depth to the surface, and modelling the dynamics of dyke growth remains a primary objective to improve the interpretation of a wide range of geophysical, petrological and geochemical evidence of magma ascent. We present results from scaled analogue experiments using Liverpool’s new Medusa Laser Imaging Facility to quantify the fluid flow dynamics and solid deformation during magma ascent in dykes. Our results detail the characteristics of dyke ascent from inception to eruption, with magma flow regimes and host-rock deformation mode dependent on dyke geometry, host-rock properties, density contrasts and magma rheology. Our results pose new conceptual models upon which the signals of magma movement in nature should be interpreted.

How to cite: Kavanagh, J. and Chalk, C.: Using analogue experiments to explore fundamental processes during magma ascent, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13854, https://doi.org/10.5194/egusphere-egu23-13854, 2023.

09:35–09:45
|
EGU23-5994
|
On-site presentation
Xavier Bolós, José Luis Macias, Yam Zul Ocampo-Díaz, and Claudio Tinoco

One of the best-known examples worldwide of monogenetic volcanism is the Parícutin volcano. The eruption began its formation in the middle of a cornfield in February 1943 and lasted until March 1952. Parícutin is the youngest edifice of the Michoacán-Guanajuato Volcanic Field, which was witness initially by local inhabitants, and later by scientists and other observers. Observations of the eruption documented the remobilization of primary ashfall by rainfall and wind. Despite these observations, the resulting reworked deposits have not yet been described in the stratigraphic sequence. The distinction between primary pyroclastic and reworked deposits is critical for the geological understanding of eruptive processes and related hazards because of their different origins, frequencies, and environmental impacts. This categorization is not always obvious and needs a detailed study to characterize the complex interbedding of both types of deposits that coexist in the volcanic sequence. Referenced to these, we conducted new field reconnaissance, coupled with laboratory analyses of the ejecta ash fraction. The detailed composite stratigraphy obtained consists of six widely dispersed fallout deposits interbedded with seven reworked units. These reworked deposits display sedimentary structures produced by tephra remobilization due to lahars and stream flows. In addition, some layers show dunes and ripples generated by duststorms. By using GIS tools, we integrated the existing data with our new composite stratigraphic column and the distribution map of the syn-eruptive reworked deposits. This analysis reveals that more than 70% of the total thicknesses correspond to syn-eruptive reworked deposits. Therefore, previous studies had overestimated the distribution of primary tephra from the Parícutin explosive phases. The lowest and flattest areas with wide rill networks, which are located 4 to 6 km north of the volcano, are composed of up to 90% reworked deposits. In contrast, proximal locations with gentler slopes located at medium altitudes better preserve pyroclastic deposits. To that end, we constructed a new isopach map of the pyroclastic deposits based on the distribution of the reworked deposits. This study brings new light to understanding the sedimentary processes that occur during volcanic eruptions and highlights the importance of recognizing pyroclastic and reworked deposits during monogenetic eruptions.

How to cite: Bolós, X., Macias, J. L., Ocampo-Díaz, Y. Z., and Tinoco, C.: Reworking processes during monogenetic eruptions. The case of the Parícutin volcano, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5994, https://doi.org/10.5194/egusphere-egu23-5994, 2023.

09:45–09:55
|
EGU23-9104
|
ECS
|
On-site presentation
João D'Araújo, Andy Hooper, Milan Lazecky, Freysteinn Sigmundsson, Teresa Ferreira, Rita Silva, João Gaspar, and Rui Marques

Eruptions at long-inactive volcanoes are usually preceded by days to months of unrest as magma migrates gradually to shallower depths. This is built into plans by civil protection agencies for societal response. Here we show that at São Jorge, Azores, after 60 years of repose, magma reached almost the surface in a vertical dike intrusion within a few hours of the seismicity onset with no previous precursory signals. São Jorge lies in a rift zone where extensional stress is expected to be built over time to accommodate magma at depth. Recent eruptions at São Jorge have produced pyroclastic density currents, and the potential for an eruption to occur with little warning poses a significant risk. Deformation associated with the event reached other neighboring islands over a distance of at least 45 km away from São Jorge. Deformation was high on the first day of activity (>50 mm within March 19-20) and significantly decreased afterward. The combined analysis of GNSS and InSAR data allows using a model of segmented rectangular dislocations with multiple patches for data inversion. A maximum opening of 1.7 m at 4-6 km depth is inferred from the modeling. We interpret the cause of the initial vertical shallow injection to be due to host rock failure conditions triggered by deviatoric stresses. We investigate why lateral spreading of the dike occurred soon after the initial injection. Using a FEM simulation, we show how the tension at the tip of a vertical propagating dike is high at the start and decreases with shallower depths, reaching similar levels of tension found at the lateral parts of the dike and increasing the probability of lateral propagation.

How to cite: D'Araújo, J., Hooper, A., Lazecky, M., Sigmundsson, F., Ferreira, T., Silva, R., Gaspar, J., and Marques, R.: Sudden shallow dyke intrusion at São Jorge Island (Azores) after 60 years of repose, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9104, https://doi.org/10.5194/egusphere-egu23-9104, 2023.

09:55–10:05
|
EGU23-3344
|
On-site presentation
Thomas R. Walter, Edgar Zorn, Pablo Gonzalez, Eugenio Sansosti, Valeria Munoz, Alina Shevchenko, Simon Plank, Diego Reale, and Nicole Richter

Volcanic eruptions are often preceded by episodes of inflation and emplacement of magma along tensile fractures. Here we study the 2021 Cumbre Vieja eruption on La Palma, Canary Islands, and present evidence for tensile fractures dissecting the new cone during the terminal stage of the eruption. We use synthetic aperture radar (SAR) observations, together with drone images and time-lapse camera data, to determine the timing, scale and complexities associated with the fracturing event, which is diverging at a topographic ridge. By comparing the field dataset with analogue models, we further explore the details of lens-shaped fractures that are characteristic for faults diverging at topographic highs and converging at topographic lows. The observations made at Cumbre Vieja and in our models are transferrable to other volcanoes and add further evidence that topography is substantially affecting the geometry and complexity of fractures and magma pathways, and the locations of eruptions.

How to cite: Walter, T. R., Zorn, E., Gonzalez, P., Sansosti, E., Munoz, V., Shevchenko, A., Plank, S., Reale, D., and Richter, N.: Late complex tensile fracturing interacts with topography at Cumbre Vieja, La Palma, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3344, https://doi.org/10.5194/egusphere-egu23-3344, 2023.

10:05–10:15
|
EGU23-12339
|
Virtual presentation
Maria Charco, Pablo J. González, Laura Garcia-Cañada, and Carmen del Fresno

One of the main goals of the modern volcanology is produce accurate eruption forecastings. Not only from a scientific point of view, but considering that approximately 30 million people live in the vicinity of active volcanic areas and tens of thousands of people have lost their lives as a result of the direct effects of historical eruptions. Thus, in 2017 "The US National Academies of Sciences, Engineering and Medicine" considered the forecast of eruptions as one of the great challenges of Volcanology. Generally, the focus is on forecasting the eruption onset, however, forecasting the style, size and duration becomes relevant and properly manage long-duration eruption, e.g., during the 2021 La Palma (Canary Islands) eruption, whose main hazards were air pollution, ash fall and lava flows. In particular, the 2021 eruption of La Palma lava flows caused extensive devastation to the surrounding community: more than 2800 buildings and almost 1000 hectares of banana plantations and farmland were destroyed. In this study, we use co-eruptive GNSS series of deformation data to estimate the eruption's end. The forecast was based on the relationship between displacements and pressure changes provided by a purely elastic model of the medium. We also estimated the location of a magma reservoir. A depth of 10-15 km is inferred. This reservoir is consistent with the main seismogenic volume during the eruption. We interpret that the reservoir pressure dropped due the progressive withdrawal of magma that fed the eruption. We assumed that the magmatic plumbing responsible for the eruption was a closed system and that the magma contributions in this zone do not cause detectable deformations. Thus, we used the pressure drop as an indicator of the end of an eruption. With the benefit of the hindsight, we extensively tested our model considering different deformation time series spams in order to evaluate the feasibility of making near-real time predictions of the duration of the eruption, and derive some constraints about the magma system.

How to cite: Charco, M., González, P. J., Garcia-Cañada, L., and del Fresno, C.: Pressure drop as a forecasting tool of eruption duration: 2021 La Palma eruption, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12339, https://doi.org/10.5194/egusphere-egu23-12339, 2023.

Coffee break
Chairpersons: Michael Heap, Sigurjon Jonsson, Virginie Pinel
10:45–10:55
|
EGU23-7141
|
ECS
|
On-site presentation
|
Aude Lavayssière, Sara Bazin, Jean-Yves Royer, and Pierre-Yves Raumer

Mooring networks of hydrophones is an effective way to monitor the ocean soundscape and its sources, and it is particularly efficient to better understand underwater volcanic eruptions. In October 2020, four continuous hydrophones were moored in the SOFAR channel around Mayotte Island, in the North Mozambique Channel, to monitor the Fani Maoré 2018-2022 submarine eruption. This eruption created a new underwater seamount at 3500 m below sea level, 50 km east of Mayotte. Since 2020, the MAHY hydrophones record sounds generated by the volcanic activity and the first results have evidenced earthquakes, underwater landslides, and impulsive signals that we related to steam bursts during lava flow emplacement. An automatic detection of these specific impulsive signals is being developed for a better monitoring but also a better understanding of their source. The hydroacoustic catalog obtained characterize the Mayotte lava flow activity and will help quantify the risk for Mayotte population. This detection could be used by Mayotte’s and other volcano observatories to monitor active submarine eruptions in the absence of regular seafloor imaging.

How to cite: Lavayssière, A., Bazin, S., Royer, J.-Y., and Raumer, P.-Y.: Hydroacoustic monitoring of Mayotte underwater volcanic eruption, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7141, https://doi.org/10.5194/egusphere-egu23-7141, 2023.

10:55–11:05
|
EGU23-5843
|
ECS
|
On-site presentation
Li Wang and Youyi Ruan

Investigation of the dynamic magma movement beneath the volcanos could provide critical information about the mechanism of volcanic eruption and therefore enhance the accuracy of eruption forecast.  Axial Seamount is an active submarine volcano located at the intersection of the Juan de Fuca Ridge and the Cobb hotspot.  Through its submarine surveillance network of Ocean Observatories Initiative (OOI), we observed magmatic activities that occurred before and during its latest eruption on April 24, 2015, as well as the following unrest events from the temporal variations of shear-wave velocity beneath Axial Seamount.

 

In this study, we applied the Rayleigh-wave admittance method, which uses the frequency-domain transfer function between seismic displacement and water pressure, to invert for shear-wave velocity changes beneath the submarine seismic stations.  The results illustrated that a large magma upwelling event happened beneath the AXEC2 (southeastern caldera of Axial Seamount) several weeks prior to its 2015 eruption, implying the magma movement through a pathway near the southeastern caldera and possibly triggered the subsequent eruption.  However, another magma upwelling event beneath the AXID1 station (southern caldera) between December 2016 and June 2017 occurred without triggering any noticeable eruption event. These magmatic activities demonstrate that the eruption of Axial Seamount is controlled by a complicated magma plumbing system.  The eruption probably depends on not only the magma influx but also the status of the plumbing system and the overlying crustal layer.  With the Rayleigh-wave admittance method and the real-time data from the OOI network, we can continuously monitor the status of Axial Seamount and provide more information for the next eruption.

How to cite: Wang, L. and Ruan, Y.: Dynamic magma movements beneath the Axial Seamount revealed by Rayleigh-wave Admittance Method, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5843, https://doi.org/10.5194/egusphere-egu23-5843, 2023.

11:05–11:15
|
EGU23-17100
|
solicited
|
On-site presentation
Nicole Richter, Francesco Massimetti, Tom Hart, Oliver Cartus, Silvan Leinss, Allan Derrien, Edgar Zorn, Alina Shevchenko, Paul Wintersteller, Martin Meschede, and Thomas Walter

Under polar and subpolar climatic conditions, volcano edifice growth and stability are affected by extreme erosion rates, mass wasting, glacier loading (and unloading), and permafrost soil conditions. Relatively small changes in temperature can lead to very different snow and ice conditions in relation to all of the above. Therefore active, shallow magmatic plumbing systems and magmatic pathways might react sensitively to even minor changes of their surrounding environmental conditions. Almost constant degassing from the summit crater of Mount Curry (Zavodovski Island) and the presence of an active lava lake within the summit crater of Mount Michael (Saunders Island) suggest the existence of shallow magmatic plumbing systems at both volcanoes. They therefore represent exceptional study sites for investigating volcano processes under subpolar climatic conditions. Because of their remoteness, none of these islands are equipped with permanently installed ground-based instruments. We observe and quantify surface displacements related to volcanic activity, fumarolic activity, tectonic activity in the Scotia arc, as well as glacier flow from high-resolution combined TerraSAR-X and PAZ interferometry and amplitude offsets. Multi-temporal topographic data are available through the TanDEM-X SAR satellite mission and photogrammetric surveys conducted in April-Mai 2019 at Saunders Island and in January-February 2023 on Zavodovski Island. Here we introduce the first results of combining and exploring UAV photogrammetry with SAR satellite data. We present a geomorphological and structural analysis of Zavodovski Island and the outer subaerial and shallower submarine flanks of Saunders Island. We also estimate the glacier volume and volume change over time on Saunders as well as surface dynamics at Zavodovski. With this study we highlight the unprecedented detail and the valuable information that can be retrieved from tasked and targeted TerraSAR-X, TanDEM-X, and PAZ satellite acquisitions coupled

How to cite: Richter, N., Massimetti, F., Hart, T., Cartus, O., Leinss, S., Derrien, A., Zorn, E., Shevchenko, A., Wintersteller, P., Meschede, M., and Walter, T.: Volcano processes at the remote South Sandwich Islands of Zavodovski and Saunders observed from air and space, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-17100, https://doi.org/10.5194/egusphere-egu23-17100, 2023.

11:15–11:25
|
EGU23-10631
|
ECS
|
On-site presentation
|
Boda Liu and Chao Qi

Large rhyolitic eruptions with ejecta of transcontinental scale have catastrophic effects on the environment. Despite its importance in volcanic hazard assessment and potentially influencing climate, the triggering of supervolcanoes remains enigmatic. Many valid mechanisms for mobilizing an eruptible magma reservoir exist, however, the fundamental question of how to initially form the magma reservoir responsible for a supereruption is unknown. Here we show that the deformation microstructure of partially molten rock could accelerate melt extraction and assemble a large eruptible magma reservoir. By modeling observed shape and orientation of melt pockets in deformed samples, we predict that deformation microstructure forms a melt network that enhances melt flux by up to 30 times. Our results suggest that compressing a crystal-rich magmatic mush in volcanic arcs or under glacial loading can assemble a large crystal-poor magma reservoir in a few thousand years, a timescale in consistent with petrological evidence of rapid assembly. Because external stress is common to most magmatic systems, deformation microstructure could be a ubiquitous catalyst for magmatic activities including supereruptions.

How to cite: Liu, B. and Qi, C.: Microstructure linking external forcing to supereruption, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10631, https://doi.org/10.5194/egusphere-egu23-10631, 2023.

11:25–11:35
|
EGU23-7166
|
solicited
|
Virtual presentation
Corentin Caudron, Társilo Girona, Thomas Lecocq, Alberto Ardid, David Dempsey, and Alexander Yates

Phreatic and hydrothermal eruptions remain among the most difficult to forecast. The frequent absence of clear precursor signals challenges volcanologists' ability to provide timely and accurate hazard advice. They remain poorly understood and have recently caused human fatalities. It is therefore paramount to better investigate such eruptions by integrating new methodologies to fully understand the preparatory processes at play and improve our ability to forecast them.

Among the different approaches to monitor volcanoes, seismology forms the basis, and most active volcanoes are nowadays equipped with at least one seismometer. Seismology is unique amongst the Earth Science disciplines involved in volcano studies, as it provides real-time information; as such, it is the backbone of every monitoring program worldwide. With data storage capabilities expanding over the last decades, new data processing tools have emerged taking advantage of continuous seismic records. Recent advances in volcano monitoring have taken advantage of seismic noise to better understand the time evolution of the subsurface. 

The well-established seismic interferometry has allowed us to detect precursory changes (dv/v or decorrelation) to phreatic eruptions at different volcanoes, thereby providing critical insights into the triggering processes. More recent approaches have provided insights into the genesis of gas-driven eruptions using seismic attenuation (DSAR: Displacement seismic amplitude ratio) and correlation with tidal stresses (LSC). Yet, puzzling observations have been made at different volcanoes requiring the use of numerical models and machine learning-based approaches, as well as complementary dataset to reach a more comprehensive understanding. This presentation will review recent insights gained into precursory processes to phreatic eruptions using seismic noise and how we could possibly forecast them. These tools are freely available to the community and have the potential to serve monitoring and aid decision-making in volcano observatories.

How to cite: Caudron, C., Girona, T., Lecocq, T., Ardid, A., Dempsey, D., and Yates, A.: Towards monitoring phreatic eruptions using seismic noise, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7166, https://doi.org/10.5194/egusphere-egu23-7166, 2023.

11:35–11:45
|
EGU23-7530
|
ECS
|
On-site presentation
Claire Harnett, Robert Watson, Eoghan Holohan, and Martin Schöpfer

Volcanic calderas are delimited by a ‘caldera wall’ which can be several hundred meters in height. This represents the degraded scarp of a fault that accommodates roof subsidence. Here, we assess the roles of friction and cohesion on caldera wall morphology by: (i) analysing the slope properties of several young natural calderas in the ALOS-3D global digital surface model (DSM), and (ii) comparing those observations to the results of a text-book analytical solution and of new Distinct Element Method (DEM) modelling.

Our analysis of the DSM suggest that caldera wall heights are not as closely linked to slope angle as previously suggested. Slope angles range from 20 – 65° and slope heights range from 99 m - 1085 m. We find that the smaller slope heights are not robustly tied to greater slope angle. When compared to analytical predictions, these slope-height data yield expected rock mass cohesion values of less than 0.25 MPa for all calderas, which is 2-3 orders of magnitude less than typical laboratory-scale values.

The DEM models explicitly simulated the process of progressive caldera collapse, wall formation and destabilisation, enabling exploration of the emergence of slope morphology as a function of increasing subsidence and of mechanical properties. Results confirm that low bulk cohesion values <0.5 MPa are required to reproduce the observed ranges of slope angles and slope heights, and they indicate that friction is the dominant control on slope evolution. Different failure mechanisms resulted as a function of cohesion and friction during early collapse: (1) granular flow with low friction and cohesion, and (2) block toppling at high friction and cohesion. During later collapse, shear failure dominates regardless of cohesion. At higher cohesion and/or friction values, the models resulted in non-linear concave-upward slope profiles that are seen at many natural calderas.

How to cite: Harnett, C., Watson, R., Holohan, E., and Schöpfer, M.: Mechanical controls on caldera slope morphology and failure, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7530, https://doi.org/10.5194/egusphere-egu23-7530, 2023.

11:45–11:55
|
EGU23-6552
|
ECS
|
On-site presentation
Giada Fernandez, Biagio Giaccio, Antonio Costa, Lorenzo Monaco, Paul Albert, Sebastien Nomade, Alison Pereira, Niklas Leicher, Federico Lucchi, Paola Petrosino, Alfonsa Milia, Donatella Insinga, Sabine Wulf, Rebecca Kearney, Daniel Veres, Diana Jordanova, and Gianluca Sottili

Assessing the history, dynamics and magnitude of pre-historic explosive volcanic eruptions relies heavily on the completeness of the stratigraphic records, the spatial distribution, and the sedimentological features of the pyroclastic deposits. Near-vent volcanic successions provide fundamental but often patchy information, both in terms of record completeness (e.g., scarce accessibility to the older deposits) and of the spatial variability of the sedimentological features. Hence, medial to distal sections increasingly represent essential integrative records.

Campi Flegrei (CF) is among the most productive volcanoes of the Mediterranean area, with a volcanic history comprised of well-known caldera-forming eruptions (e.g., Campanian Ignimbrite, CI, ~40 ka; Neapolitan Yellow Tuff, NYT, ~14 ka). Furthermore, recent studies correlated a well-known widespread distal ash layer, the so-called Y-3, with a poorly exposed proximal CF pyroclastic unit (Masseria del Monte Tuff, 29ka), allowing a re-assessment of the magnitude of this eruption, now recognized as a third large-magnitude (VEI 6) eruption at CF. The discovery of this large eruption reduces drastically the recurrence intervals of large-magnitude events at CF and has major implications for volcanic hazard assessment.

While the most powerful Late Pleistocene (e.g., post-NYT and partially post-CI) eruptions at CF have been the subject of extensive investigations, less is known about its earliest activity. Motivated by this knowledge gap, we have reviewed the research on Middle-Late Pleistocene eruptions from the CF (~160-90 ka) in light of new compositional (EMPA + LA-ICP-MS), grain-size distribution (dry/wet sieving and laser) and morphoscopy (SEM) data of tephra layers from proximal and distal settings, including inland and offshore records. Our study provides a long-term overview and cornerstone that will help provide future eruptive scenarios, essential for the quantification of recurrence times of explosive activity and in volcanic hazard assessment in the Neapolitan area. This overview sets the basis for modelling dispersion as well as eruptive dynamics parameters of pre-CI large-magnitude eruptions, needed to better understand the behavior of the CF caldera with a long-term perspective.

How to cite: Fernandez, G., Giaccio, B., Costa, A., Monaco, L., Albert, P., Nomade, S., Pereira, A., Leicher, N., Lucchi, F., Petrosino, P., Milia, A., Insinga, D., Wulf, S., Kearney, R., Veres, D., Jordanova, D., and Sottili, G.: New constraints on Middle-Late Pleistocene large-magnitude eruptions from Campi Flegrei, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6552, https://doi.org/10.5194/egusphere-egu23-6552, 2023.

11:55–12:05
|
EGU23-7174
|
On-site presentation
Federico Di Traglia, Valentina Bruno, Francesco Casu, Ornella Cocina, Claudio De Luca, Flora Giudicepietro, Riccardo Lanari, Giovanni Macedonio, Mario Mattia, Fernando Monterroso, and Eugenio Privitera

Active calderas are typically characterized by shallow magmatic systems associated with marked geothermal anomalies and significant fluid releases. Ground deformation are generally associated with uplift or subsidence, induced by recharges or emptying/cooling of the magmatic storage system, by expansions or contractions of hydrothermal systems, or by combinations of these factors. The pressure variations in the hydrothermal systems can lead to an increase in the fumarolic and distributed soil degassing activity or in the sudden release of gas, leading to phreatic explosions, even to violent ones.

The Island of Vulcano (Italy), part of the Aeolian archipelago (southern Tyrrhenian Sea), contains an active caldera (La Fossa caldera) showing a widespread degassing and fumarolic activity, mainly localized in the main active volcano (La Fossa cone) and in other emissions zones within the caldera. The La Fossa caldera has shown signs of unrest since September 2021 and to date monitoring parameters have not returned to background levels.

Accordingly, the geophysical measurements obtained through the Vulcano Island monitoring infrastructures, which include geodetic and seismic data, were analysed. GNSS and DInSAR data, the former processed using the GAMIT-GLOBK software to calculate both time series and velocities of every remote station of the 7-stations network in Vulcano and Lipari islands, the latter processed through the P-SBAS technique, were used to identify the source of deformation. The seismic network data were exploited to discriminate the seismicity induced by regional tectonics from that induced by the magmatic or hydrothermal system (VT, VLP, tremor).

The inversion of the ground deformation measurements made possible to investigate the source within the hydrothermal system of the Fossa cone. Moreover. the seismic data analysis reveals the activation of regional crustal structures during the hydrothermal unrest, as well as the flow of hydrothermal fluids within the caldera structures linked to the presence of a pressurized hydrothermal system.

The presented results will provide a general overview of the main findings relevant to the Vulcano Island geodetic and seismic data inversion and analysis.

How to cite: Di Traglia, F., Bruno, V., Casu, F., Cocina, O., De Luca, C., Giudicepietro, F., Lanari, R., Macedonio, G., Mattia, M., Monterroso, F., and Privitera, E.: Dealing with hydrothermal unrest in active calderas by jointly exploiting geodetic and seismic measurements: the 2021-22 Vulcano Island (Italy) crisis case study, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7174, https://doi.org/10.5194/egusphere-egu23-7174, 2023.

12:05–12:15
|
EGU23-17466
|
ECS
|
On-site presentation
Francesco Carnemolla, Alessandro Bonforte, Fabio Brighenti, Pierre Briole, Giorgio De Guidi, Francesco Guglielmino, and Giuseppe Puglisi

The geodynamic framework of Mount Etna volcano (Italy) is characterised by two superimposed tectonic domains: a compressional one, oriented N-S, and an extensional one, oriented approximately WNW-ESE. The combination of these two domains and the volcano activity, has generated a complex system of faults prevalently on the eastern flank of the volcano. The eastern flank is the most active area of the volcano in terms of deformation and seismicity. The velocities there are at least one order of magnitude greater than in the rest of the volcano flanks due to the eastward sliding of the eastern flank.

The monitoring and analysis of the acceleration occurring on the eastern flank of Mount Etna is the keystone to understand the volcano-tectonic dynamics that, apart from the tectonic and magmatic processes, involves the instability of this flank in a densely inhabited area.

In order to monitor the deformation, Istituto Nazionale Geofisica e Vulcanologia – Osservatorio Etneo (INGV-OE) and the GeoDynamic & GeoMatic Laboratory of the University of Catania integrate GNSS and InSAR products with twofold objective: to characterize the dynamics of the area and to analyse the deformation transients, this last in view of a possible use in the framework of an alert system.

Here, we analyse the ground deformation that occurred between 2016 and 2019 across the faults of the south-eastern flank of Mount Etna. On the south-eastern flank the deformation is accommodated by several faults which have different kinematics and behaviours. We discriminate the deformation transient and the activity of the Belpasso-Ognina lineament, Tremestieri, Trecastagni, San Gregorio-Acitrezza, Linera, Nizzeti and Fiandaca faults. The latter generated the 26 December 2018 earthquake, two days after the eruption of 24 December, which induced a clear post seismic deformation, detected by GNSS and InSAR data. In particular, we discriminate the deformation occurred along the San Gregorio-Acitrezza fault, which is accommodated by the Nizzeti fault, and we analyse the post seismic deformation along the Linera fault. We analyse the Slow Slip Events (SSE) that are observed in the GNSS and InSAR time series in the vicinity of the Acitrezza fault and we quantify and discuss the tectonic origin of the Belpasso-Ognina lineament that we interpreted as a tear fault.

How to cite: Carnemolla, F., Bonforte, A., Brighenti, F., Briole, P., De Guidi, G., Guglielmino, F., and Puglisi, G.: GNSS and InSAR study of the ground deformation of the eastern flank of Mount Etna from 2016 to 2019, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-17466, https://doi.org/10.5194/egusphere-egu23-17466, 2023.

12:15–12:25
|
EGU23-10489
|
ECS
|
On-site presentation
Alejandra Vásquez Castillo, Francesco Guglielmino, and Giuseppe Puglisi

Measuring how the surface deforms in time and space plays a crucial role, not only for understanding volcanic mechanisms, but also for hazard assessment, risk mitigation and supporting crisis management. Mount Etna, one of the most active volcanoes in the world, with a growing population in its vicinity, has experienced an intense period of activity in recent years, mainly characterized by continuous degassing and recurring lava fountains. Due to this activity, continuous deformation can be observed at Mount Etna.

The summit craters showed brisk activity in the last months of 2020, accompanied by increasing seismicity. A period of paroxysms started in December 2020 and intensified in February 2021, with brief but violent eruptive lava-fountaining episodes, that continued throughout all the year. The focus of this study is to understand the dynamics of the near-surface feeding system by constraining the sources responsible for the observed paroxysms. To localize and describe the time-dependent ground deformation, we examine surface deformation at Mount Etna by means of an Interferometric Synthetic Aperture Radar time series analysis utilizing Sentinel-1 data between the second half of 2020 and the end of 2021. The onset of the paroxysms was preceded by an inflation period and deflation episodes were observed during the paroxysms period, which suggests a link between the volcano activity and the observed deformation. The findings may contribute to the discussion on the distribution and dynamics of magma reservoirs that form Mount Etna's conduit system and its interaction with the local tectonic regime.

How to cite: Vásquez Castillo, A., Guglielmino, F., and Puglisi, G.: On the 2021 Volcanic Paroxysmal Activity of Mount Etna: a Ground Deformation Analysis Using InSAR, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10489, https://doi.org/10.5194/egusphere-egu23-10489, 2023.

Posters on site: Fri, 28 Apr, 16:15–18:00 | Hall X2

X2.79
|
EGU23-12116
|
ECS
Charles Masquelet, Sylvie Leroy, Daniel Sauter, Matthias Delescluse, Nicolas Chamot-Rooke, Isabelle Thinon, Louise Watremez, and Anne Lemoine

The timing of volcanic events at the Comoros archipelago (North Mozambique Channel) are currently only known by dating samples from the onshore islands. According to these data, the oldest lavas from the Comoros are 10 Ma and several distinct volcanic periods are inferred (Michon, 2016). However, the onset of the volcanism within the archipelago cannot be constrained by these data. Here we use two different datasets of wide angle, and  high resolution multichannel seismic reflexion profiles to provide insights on the birth and early evolution of the volcanism around the islands of Mohéli, Anjouan and Mayotte, in the Comoros basin (SISMAORE cruise, ANR COYOTES project, (Thinon et al., 2022)).

The seismic interpretation revealed several distinct volcanic horizons within the sedimentary cover, that could be related to the formation of the Jumelles Ridge, Geyser bank, Mohéli, Anjouan and Mayotte volcanic island. We identify the onset of the main volcanic event that led to the formation of Mayotte island. We show that the corresponding seismic volcanic horizon is located at different depths in the north and the south of Mayotte island. This indicates at least two different major volcanic phases of the Mayotte island edification. Seismic profiles also show  the presence of a magmatic feeder complex underneath. Using known regional stratigraphy, we finally propose a chronology of all the volcanic episodes in the regional volcanic context of the construction of the Comoros archipelago.

Michon, L., 2016. The Volcanism of the Comoros Archipelago Integrated at a Regional Scale, in: Bachelery, P., Lenat, J.-F., Di Muro, A., Michon, L. (Eds.), Active Volcanoes of the Southwest Indian Ocean, Active Volcanoes of the World. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 333–344. https://doi.org/10.1007/978-3-642-31395-0_21

Thinon, I., Lemoine, A., Leroy, S., Paquet, F., Berthod, C., Zaragosi, S., Famin, V., Feuillet, N., Boymond, P., Masquelet, C., Mercury, N., Rusquet, A., Scalabrin, C., Van der Woerd, J., Bernard, J., Bignon, J., Clouard, V., Doubre, C., Jacques, E., Jorry, S.J., Rolandone, F., Chamot-Rooke, N., Delescluse, M., Franke, D., Watremez, L., Bachèlery, P., Michon, L., Sauter, D., Bujan, S., Canva, A., Dassie, E., Roche, V., Ali, S., Sitti Allaouia, A.H., Deplus, C., Rad, S., Sadeski, L., 2022. Volcanism and tectonics unveiled in the Comoros Archipelago between Africa and Madagascar. Comptes Rendus. Géoscience 354, 1–28. https://doi.org/10.5802/crgeos.159

How to cite: Masquelet, C., Leroy, S., Sauter, D., Delescluse, M., Chamot-Rooke, N., Thinon, I., Watremez, L., and Lemoine, A.: Major volcanic events from Mohéli, Anjouan and Mayotte Island edification in the Comoros Archipelago at Northern Mozambique Channel inferred by seismic reflection data., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12116, https://doi.org/10.5194/egusphere-egu23-12116, 2023.

X2.80
|
EGU23-5046
Isabelle Thinon, Anne Lemoine, Sylvie Leroy, Fabien Paquet, Carole Berthod, Sébastien Zaragosi, Vincent Famin, Nathalie Feuillet, Pierre Boymond, Charles Masquelet, Anais Rusquet, and Nicolas Mercury and the SISMAORE and COYOTES teams

Geophysical and geological data acquired during the 2020–2021 SISMAORE oceanographic cruise reveal a corridor of recent volcanic and tectonic features 200 km wide and 600 km long within and north of Comoros Archipelago in the North Mozambique Channel. More than 2200 submarine volcanic edifices, comparable to the Fani Maoré volcano, have been identified. Most of them are distributed according to two large submarine tectonic-volcanic fields: the N’Drounde province oriented N160°E north of Grande-Comore Island, and the Mwezi province oriented N130°E north of Anjouan and Mayotte Islands. The presence of popping basaltic rocks sampled in the Mwezi suggests post-Pleistocene volcanic activity. The geometry and distribution of recent structures observed on the seafloor are consistent with a current regional dextral transtensional context. Their orientations change progressively from west to east (∼N160°E, ∼N130°E, ∼EW). In the western part, the volcanism could be influenced by the pre-existing structural fabric of the Mesozoic crust. The wide tectono-volcanic corridor underlines the incipient Somalia–Lwandle dextral lithospheric plate boundary between the East-African Rift System and Madagascar. For details see Thinon et al. (2022;  doi 10.5802/crgeos.159).

How to cite: Thinon, I., Lemoine, A., Leroy, S., Paquet, F., Berthod, C., Zaragosi, S., Famin, V., Feuillet, N., Boymond, P., Masquelet, C., Rusquet, A., and Mercury, N. and the SISMAORE and COYOTES teams: Volcanism and tectonics unveiled in the Comoros Archipelago between Africa and Madagascar, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5046, https://doi.org/10.5194/egusphere-egu23-5046, 2023.

X2.81
|
EGU23-5609
Fabien Albino, Juliet Biggs, Milan Lazecký, Yasser Maghsoudi, and Samuel McGowan

Countries with low to lower-middle income have limited resources to deploy and maintain ground monitoring networks. In this context, satellite-based techniques such as Radar interferometry (InSAR) is a great solution for detecting volcanic ground deformation at regional-scale. With the launch in 2014 of Sentinel-1 mission, regional monitoring of volcanic unrest becomes easier as SAR data are freely available with a revisit time of 6-12 days. Here, we develop a tuned processing workflow to produce Sentinel-1 InSAR time series and to automatically detect volcanic unrest over 80 volcanic systems located along the East African Rift System (EARS). First, we show that the correction of atmospheric signals for the arid and low-elevation EARS volcanoes is less important than for other volcanic environments. For a 5-year times series (between Jan. 2015 and Dec. 2019), we show that statistically uncertainties in InSAR velocities are around 0.1 cm/yr, whereas uncertainties associated with the choice of reference pixel are typically 0.3–0.6 cm/yr. For the automatic detection, we found that volcanic unrest can be detected with high confidence in the case the cumulative displacements exceed three times the temporal noise (threshold of 3σ). Based on this criterion, our survey reveals ground unrest at 16 volcanic centres among the 38 volcanic centres showing historical evidence of eruptive or unrest activity. A large variety of processes causing deformation occurs in the EARS: (1) subsidence due to contraction of magma bodies at Alu-Dalafilla, Dallol, Paka and Silali; (2) subsidence due to lava flows compaction at Kone and Nabro; (3) subsidence due to fluid migration at Olkaria and Aluto or fault-fluids interactions at Haludebi and Gada Ale; (4) rapid inflation due to magma intrusions at Erta Ale and Fentale; (5) short-lived inflation of shallow reservoirs at Nabro and Suswa; (6) long-lived inflation of large magmatic systems at Corbetti, Tullu Moje and Dabbahu. Except Olkaria and Kone, all these volcanoes were identified as deforming by previous satellites missions (between late 90’s and early 2000), which is an indication of the persistence of activity over long-time scales (>10 years).  Finally, we fit the time series using simple functional forms and classify seven of the volcano time series as linear, six as sigmoidal and three as hybrid, enabling us to discriminate between steady deformation and short-term pulses of deformation. We found that the characteristics of the unrest signals are independent of the expected processes, which means that additional information (structural geology, seismicity, eruptive history and source modelling) will be necessary to characterize the processes causing the unrest. Our final objective will be to improve the transfer of this information to local scientists in Africa, which can be achieved by integrating our tools to an existing monitoring system and by developing web-platform where the InSAR products can be freely available.

How to cite: Albino, F., Biggs, J., Lazecký, M., Maghsoudi, Y., and McGowan, S.: Regional-scale ground monitoring of 80 East African Rift volcanoes using Sentinel-1 SAR interferometry, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5609, https://doi.org/10.5194/egusphere-egu23-5609, 2023.

X2.82
|
EGU23-5163
|
ECS
|
Ana Martinez Garcia, Joachim Gottsmann, and Alison Rust

The Krafla Volcanic System (KVS) in the Northern Volcanic Zone (NVZ) in Iceland last erupted between 1975 and 1984, during an eruptive period called “the Krafla Fires”. The KVS is composed of a restless caldera, an array of scoria cones along a fissure swarm and is among the best-studied volcanic systems due to the exploitation of its geothermal potential. In 2009, the Icelandic Deep Drilling Project (IDDP) encountered a shallow rhyolitic magma body at 2.1 km depth beneath the caldera. To date, no geophysical method has been able to image this magma body at Krafla within the top 4 km of the crust.

  Here we present new micro-gravity data collected in June and July 2022 across a 14-station network of benchmarks in the KVS. Micro-gravimetry is a relative method that records changes in gravity between a reference and a series of benchmarks over both space and time to investigate subsurface mass or density changes via time-series analysis and modelling.

  Our 2022 survey highlights negative gravity differences of benchmarks located in the centre of the caldera with respect to a reference located to the south and outside the caldera. The most negative values are found in its eastern part. Positive gravity differences can be found south of the southern caldera wall along a set of past eruptive fissures.

  The next steps in data processing include data reduction for deformation effects to link the new data to previous joint deformation and micro-gravity surveys conducted at the KVS since 1965. This should enable us to quantify the long-term evolution of the KVS over more than 50 years providing unprecedented insights into its inner workings.

How to cite: Martinez Garcia, A., Gottsmann, J., and Rust, A.: The long-term evolution at Krafla Volcanic System, Iceland, by time-lapse microgravity., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5163, https://doi.org/10.5194/egusphere-egu23-5163, 2023.

X2.83
|
EGU23-10409
|
ECS
Jamie McCann, Tom Winder, Conor Bacon, and Nicholas Rawlinson

Askja is an active volcano situated in the Northern Volcanic Zone of Iceland that last erupted in 1961. Since then, long-term geodetic studies of Askja’s caldera complex have tracked the deflation at a decaying rate associated with a shallow source. However, in August 2021, a rapid reversal of this trend indicated the onset of re-inflation, which, as of January 2023, has resulted in 45cm of uplift near the centre of the primary caldera. While several techniques have been used to measure the geodetic signal associated with this inflation, including gravity and InSAR data, there has yet to be a detailed examination of the seismic response. We observe a definitive increase in the rate of seismicity associated with the onset of re-inflation in August 2021. In this study we examine the sensitivity of shear wave splitting, a phenomenon arising due to seismic anisotropy in the crust, to the changing stress state of the crust within and surrounding Askja associated with this new phase of inflation. We estimate the fast orientation and delay time, which parameterise the orientation and magnitude of seismic anisotropy respectively, from split shear wave arrivals across our local network of seismometers. We leverage an extensive catalogue of microearthquakes in and around Askja spanning 2007 to 2022 in order to compare the variation in pre- and post-inflation delay times and strength of anisotropy, to better understand the sensitivity of shear wave splitting to stress changes during periods of volcanic inflation. This will give valuable information on whether shear wave splitting can be used as a proxy for stress changes when other geodetic observations cannot be performed in volcanic and other settings, as well as the role shear wave splitting has in combination with these other techniques.

How to cite: McCann, J., Winder, T., Bacon, C., and Rawlinson, N.: Testing the Sensitivity of Shear Wave Splitting to Volcanic Inflation, A Case Study from Askja, Iceland, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10409, https://doi.org/10.5194/egusphere-egu23-10409, 2023.

X2.84
|
EGU23-13580
Gevorg Navasardyan, Ivan Savov, Edmond Grigoryan, Jean-Philippe Metaxian, Lilit Sargsyan, Elya Sahakyan, Avet Galstyan, and Khachatur Meliksetian

In this contribution we discuss the geological structure, temporal and spatial relationships of Gegham upland between polygenetic and monogenetic volcanic activity as well as transitions from one to another as well as geochemical features of magma generation processes.

Armenia is situated in the NE part of the Anatolian-Armenian-Iranian plateau, an intensely deformed segment of the Alpine-Himalayan belt. The complex geological structure of the region is represented by a mosaic of tectonic blocks comprising fragments of volcanic arcs, continental crust and exhumed oceanic crust of the Mesozoic Tethys ocean basin (Meliksetian, 2013). The Gegham volcanic upland is located in the center part of the Neogene-Quaternary volcanic belt formed within the territory of the Armenian Highland. The duration of volcanism within the Gegham ridge spans from the Late Miocene to the Holocene (Karakhanyan et al. 2003, Karakhanyan et al. 2002). Temporal and spatial relationships between polygenetic and monogenetic volcanic activity as well as transitions from one to another are among fundamental problems in volcanology. Geological evidence such as presence of thick (abouth 500m) Vokhchaberd volcanoclastic suite at foothills of Gegham volcanic ridge suggests presence of stratovolcano (caldera-?) activity in Late Miocene-Pliocene (K-Ar dating data 3.4-6.7Ma; Bagdasaryan and Ghukasyan 1985) in Gegham, that was switched later to monogenetic activity and crater (or caldera) and slopes of former stratovolcano covered by monogenetic vents and their lava flows. After the polygenic volcanism the volcanism of Gegham upland is accompanied by fissure (plateau basalt) and monogenic volcanism.

Plateau basalts of Gegham upland distributed within town Gavar and Kotayk plateau, gorg of Hrazdan river up to village Parakar and age of these are 40Ar/39Ar 2.37±0.03 Ma (Neill et al., 2015). According to K. Karapetyan (1962, 1973) the youngest, Upper Pleistocene-Holocene volcanism of the upland is confined to the watershed part of the upland and the Eratumber plateau. According to Meliksetian (2017), there are data from extended flows from the Gegam upland - Argavand (221.1±5.0 Ka), Gutansar (314.1±16.2 Ka), Garni columnar flow of basaltic trachyandesites (127.7± 2.6 Ka) and lavas overlapping the Garni flow (49.9±9.2 Ka), which show the chronological and stratigraphic position volcanic activity of Gegham upland.

Taking into account the available and new reliable data, it is obvious that the volcanism of the Gegham upland continued from the Late Miocene-Early Pliocene time and up to the Upper Pleistocene and Holocene, and at the turn of the Pliocene-Quaternary period, due to changes in volcano-tectonic conditions, a change occurred in polygenic explosive-effusive volcanism to predominantly effusive areal.

Geochemical typification of the volcanic series of the Gegham upland indicates the predominance of "subduction" related fingerprints in them, however, some transitional to "intraplate" geochemical features are also found. The geochemical features and the petrogenetic model of the evolution of the volcanic series of the Gegham upland suggest a single magma-generating source and similar conditions for the evolution of melts within the entire Gegham upland.

 

How to cite: Navasardyan, G., Savov, I., Grigoryan, E., Metaxian, J.-P., Sargsyan, L., Sahakyan, E., Galstyan, A., and Meliksetian, K.: Nature of polygenetic to monogenetic transition of volcanism of Gegham volcanic ridge (Armenia), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13580, https://doi.org/10.5194/egusphere-egu23-13580, 2023.

X2.85
|
EGU23-6906
|
Fakhraddin Gadirov (Kadirov) and Bahruz Ahadov

In this research, the Interferometric Synthetic Aperture Radar (InSAR) method is used to evaluate the connection between earthquakes and volcano dynamics in Azerbaijan. InSAR provides a robust technique for defining the complexity of earthquakes in spatial dimensions and provides more precise information about the effects of earthquakes than traditional methods. We assessed pre-, co-, and post-seismic scenarios to find the possible triggering relationships between moderate earthquakes and the Ayazakhtarma mud volcano. The Ayazakhtarma volcano is located 46 km from the 2021 Shamakhi and 67 km from the 2019 Basqal earthquakes, respectively. In this study, comprehensive deformation time series and velocities for the volcano using Sentinel 1A/B data between 2014 and 2022 were produced from LiCSAR products using LiCSBAS. At the same time, a radar line-of-sight (LOS) displacement map was generated based on results from the GMT5SAR for pre-, co-, and post-seismic deformation of earthquakes. Based on our observations of the following earthquakes, our results show that moderate earthquakes (Mw≤5) cannot trigger large mud volcano eruptions. In particular, the study of the Ayazakhtarma mud volcano revealed significant LOS changes that were positive and negative in the western half and eastern half of the site, respectively. Our research helps us comprehend how earthquakes impact eruptive processes. In two different situations, the interferograms enable the detection of ground displacement associated with mud volcano activity. At the Ayazakhtarma, faults also play a fairly important role in the deformation pattern. Interestingly, the observed fault system primarily exists in the region that divides sectors with various rates of subsidence. The interferometric data have been studied, providing new information on the deformation patterns of the Ayazakhtarma mud volcano.

How to cite: Gadirov (Kadirov), F. and Ahadov, B.: The Relationship Between Moderate Earthquakes and Ayazakhtarma Mud Volcano Using the InSAR Technique in Azerbaijan, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6906, https://doi.org/10.5194/egusphere-egu23-6906, 2023.

X2.86
|
EGU23-13482
|
ECS
Owen McCluskey, Paolo Papale, Chiara Montagna, and Deepak Garg

Typically surface displacements, as a consequence of magmatic movements, are calculated by implementing either a data inversion model or an analytical model comprising of loosely constrained, generalised rock properties and simplified source geometries. In fact, these analytical models are commonly characterised by a pressurised point source embedded within a homogeneous, isotopic, flat, elastic half space (i.e. the Mogi-McTigue Models). The Mogi model, in particular, provides a quick and relatively accurate estimation of the symmetric, radial displacement patterns from a predefined pressure source. However, limitations arise from the assumptions behind the parameterisation of the model (Masterlark, 2007), namely defining the elastic moduli of the matrix and failing to account for the influence that the topography exerts on the volcanic system. 

This work seeks to address these limitations by employing GALES (GAlerkin LEast Squares), a Multiphysics finite element software (FEM) that was developed by INGV, Sezione di Pisa. GALES consists of various geophysical solvers, including, but not limited to: computational fluid dynamics, computational solid dynamics and fluid solid interaction (Garg & Papale, 2022). The GALES software is tailored towards high performance computing (HPC), on cluster machines, and has been used regularly since its inception; contributing to several significant studies pertaining to magma transport and rock deformation. Thus, GALES is seen as the ideal software platform to introduce geophysical and spatial heterogeneities to these established analytical models - this time with the topography of the volcano at the forefront of its consideration. 

As 3D simulations of this extent are computationally expensive, the open-source softwares MESHER (Marsh et. al., 2018) and GMSH were used to generate a dynamic computational mesh, of variable resolution, for the simulations by deriving a triangulated irregular network (TIN) from the Tinitaly Digital Elevation (~10 m resolution - see Tarquini et. al., 2007) and GEBCO (2022) Bathymetry datasets (~500 m resolution). Significantly, it was also possible to avail of the INGV’s extensive monitoring network by including the positions of the signal receivers stationed across a vast computational domain of 100 km x 100 km x -50 km. The integration of these receiver stations not only allows for a direct and comprehensive comparative analysis of the modelled synthetic deformation signals against the catalogues of empirical data, but also significantly, the extent of its coverage is beneficial as we can obtain deformation patterns from a variety of different source locations, both in the near-field and far-field ranges. 

Therefore, whilst recording volcanic deformation signals and distinguishing its sources at significant depths within the Earth’s crust can prove to be complex, challenging and even elusive, the combination of these numerical models, high-resolution datasets along with continuous monitoring, simulations such as these have the potential to provide new insights into the existence, behaviour and evolution of deep magmatic bodies (Dzurisin, 2003), as well as, constraining the geophysical characteristics of the medium by which they are emplaced. 

How to cite: McCluskey, O., Papale, P., Montagna, C., and Garg, D.: Integrating high-resolution topography data of Mount Etna to produce numerical simulations of surface deformation patterns associated with deep rooted magmatic pressure sources, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13482, https://doi.org/10.5194/egusphere-egu23-13482, 2023.

X2.87
|
EGU23-7704
Giuseppe Pezzo, Mimmo Palano, Lisa Beccaro, Cristiano Tolomei, Matteo Albano, Simone Atzori, and Claudio Chiarabba

Spatial-temporal ground deformation patterns of volcanoes is one of the major and more impressive observations of the volcanic dynamic. Cause of his numerous volcanic, seismic, and gravitational phenomena, Mt. Etna is one of the more studied volcanoes worldwide. We processed and analyzed GNSS and InSAR dataset from January 2015 - March 2021 period. In addition to inflation and deflation displacement pattern, we observe a spectacular velocity modulation of the superfast seaward motion of the eastern flank. Rare flank motion reversal indicates that short-term contraction of the volcano occasionally overcomes the gravity-controlled sliding of the eastern flank. On the other hand, fast dike intrusion guided the acceleration of the sliding flank, potentially evolving into sudden collapses, fault creep, and seismic release. These observations can be of relevance for addressing short term scenarios and forecasting of the quantity of magma accumulating within the plumbing system.

How to cite: Pezzo, G., Palano, M., Beccaro, L., Tolomei, C., Albano, M., Atzori, S., and Chiarabba, C.: Flank collapse and magma dynamics interactions on stratovolcanoes: InSAR and GNSS observations at Mt. Etna (Italy), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7704, https://doi.org/10.5194/egusphere-egu23-7704, 2023.

X2.88
|
EGU23-14339
|
ECS
The Taverna San Felice dike: insights into magmatic intrusion processes in carbonates and relationships with the Middle-Late Pleistocene volcano-tectonic activity of the Garigliano graben and Roccamonfina volcano (southern Italy)
(withdrawn)
Jacopo Natale, Stefano Vitale, Guido Giordano, Lorenzo Fedele, Federico Lucci, Alessandro Vona, Roberto Isaia, and Sabatino Ciarcia
X2.89
|
EGU23-12087
|
ECS
Michel Kühn, Christian Berndt, Sebastian Krastel, Jens Karstens, Sebastian Watt, Steffen Kutterolf, Katrin Huhn, and Tim Freudenthal

Volcanic sector collapses generated some of the most voluminous mass transport deposits on Earth and triggered devastating tsunamis with numerous casualties. The associated sector collapse deposits occur around many volcanic islands all over the world. The shelf around the volcanic island of Montserrat (Lesser Antilles) and the adjacent Montserrat-Bouillante-Graben host more than ten surficial or buried landslide deposits with most of them classified as volcanic debris avalanche deposits by previous studies. The most intensively studied deposit (Deposit 2) is associated with a landslide that occurred at ~ 130 ka and comprises a volume of 10 km³, including remnants of the volcanic flank and secondarily mobilized seafloor sediments. Here, we present new 2D and 3D seismic data as well as MeBo drill core data from Deposit 2 that reveal multi-phase deposition including an initial blocky volcanic debris avalanche followed by secondary seafloor failure and a late- erosive event. Late-stage erosion is evidenced by a channel-like incision on the hummocky surface of Deposit 2 about 15 km from the source region. Erosional incisions into the top of sector collapse deposit have also been reported from Ritter Island, Papua New Guinea – the only other volcanic landslide deposit that was studied at similarly high resolution. This may imply that late stage erosive turbidites are a common process during volcanic sector collapse. This requires geological and oceanographic processes that can create high flow velocities close to the source of the collapse area leading to a late down-slope acceleration of sediments that were suspended in the water column.

How to cite: Kühn, M., Berndt, C., Krastel, S., Karstens, J., Watt, S., Kutterolf, S., Huhn, K., and Freudenthal, T.: Flank collapse, sediment failure and flow-transition: the multi-stage deposition of a volcanic sector collapse offshore Montserrat, Lesser Antilles, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12087, https://doi.org/10.5194/egusphere-egu23-12087, 2023.

X2.90
|
EGU23-12143
Francesco Maccaferri, Ayleen Gaete Roja, and Lorenzo Mantiloni

Unrests at calderas are usually characterized by surface uplift, which is often driven by the pressurization of a sill-like reservoir. If an unrest ends up with an eruption, the location and timing for the opening of the eruptive vent are difficult to predict. In fact, when a reservoir fails, a magmatic dyke nucleates and starts propagating towards the surface, following a direction that results from the interplay between magma pressure, local stress, and regional tectonic. Where and how a sill reservoir will fail is one of the most uncertain factors in such a pre-eruptive scenario. In order to study the transition between an inflating sill and a dyke intrusion, we developed an original analogue model set-up: We shaped the surface of a solidified gelatin block, reproducing a simplified topography of Campi Flegrei caldera (Italy). This provides our model with the local unloading stress due to the presence of the caldera. In addition, we introduced a variable horizontal extension by expanding the gelatin block in one direction, providing a regional extension. We placed a sill-type reservoir below the caldera, scaling its dimensions based on previous deformation studies at Campi Flegrei. In our experiments, the reservoir was progressively pressurized through the injection of air from the bottom of the gelatin block, simulating a process of shallow sill-reservoir activation by a deeper “feeder dyke”. Depending on the ratio between the local unloading stress and the regional extension, we observed two main behaviors for the nucleation of a shallow dyke: I) if the local stress dominates over the regional extension - when the sill overpressure reaches a critical value - we observed the lateral growth of the sill, followed by the progressive re-orientation of the intrusion towards vertical, thus forming a dike which fed a circumferential vent on the rim of the caldera; II) if the extension dominates, the sill-to-dyke nucleation still occurs at the edge of the sill, but with a vertical dyke opening in the direction of the regional extension (on the same plane as the feeder dyke). The intrusion grows towards the surface, leading to a radial fissure located at the edge of the caldera.

Previous estimates for the stress state at Campi Flegrei caldera from Rivalta et al. (2019) would suggest that the most relevant mechanism for Campi Flegrei may be the one dominated by the local stress rather than the regional extension (type I).

How to cite: Maccaferri, F., Gaete Roja, A., and Mantiloni, L.: Sill to dyke transition beneath a caldera: the competition between local stress and regional extension. Insights from analogue experiments applied to Campi Flegrei caldera, Italy., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12143, https://doi.org/10.5194/egusphere-egu23-12143, 2023.

X2.91
|
EGU23-13107
Valentina Bruno, Prospero De Martino, Mario Dolce, Mario Mattia, and Emily K. Montgomery-Brown

The Campi Flegrei caldera (southern Italy) is one of the most populated volcanic areas on the Earth. It is characterized by intense uplift episodes followed by subsidence phases. Following the 1982–1984 unrest, there was about 21 years of subsidence,  followed by a new phase of inflation started in 2005 and, with increasing uplift rates over time, is still ongoing. Since 2005, the total vertical ground displacement is about 1 m near the city of Pozzuoli.

We analyze the evolution of the volcanic sources that caused the measured ground deformations since 2000 by modelling the Global Navigation Satellite System (GNSS) data from the permanent monitoring network in the caldera. Based on changes in slope in the GNSS displacement time series, we divide the recent inflation period into different phases. During time periods characterized by a near-linear trend, we can infer that a stationary pressure source is active inside the caldera. Using this inference, we describe the ground deformations of the last two decades through different sub-intervals, as “snapshots” that are the result of the time evolution of the inner volcano-dynamics.

Furthermore, over the investigated period we analyze the evolution of surface stresses from an ellipsoidal source model and the strain rate patterns from the horizontal GNSS velocities. In particular, we compute areal strain rates, shear strain rate magnitudes, associated with a strike-slip component of deformation, and rotation rates, and this helps us to infer surface manifestations of subsurface deformations.

How to cite: Bruno, V., De Martino, P., Dolce, M., Mattia, M., and Montgomery-Brown, E. K.: Modeling of volcanic sources and evolution of stress and strain rate at Campi Flegrei caldera (Italy) from GNSS data (2000-2022), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13107, https://doi.org/10.5194/egusphere-egu23-13107, 2023.

X2.92
|
EGU23-13251
|
ECS
Ana Astort, Elisa Trasatti, Marco Polcari, Mauro Antonio Di Vito, and Valerio Acocella

The current unrest phase at Campi Flegrei Caldera, Italy from 2000 to present is evidenced by increasing seismicity rates and magnitude, gas emissions and remarkable ground deformation. We consider multi-technique geodetic data to constrain the recent surface deformations and study the possible hazard implications. Time-series from the COSMO-SkyMed satellite mission and GNSS data in the period 2013-2020 show an increasing rate of uplift at the caldera center, reaching a total of about 1 m in the town of Pozzuoli during 2010-2020. Horizontal deformation confirms the inflationary trend. Also, new GNSS seafloor measurements, located in the Gulf of Pozzuoli and available from 2017 to 2020, show a nearly radial pattern. The use of these data in the analysis, in addition to the inland GNSS and InSAR data, helps constraining the 3D pattern of deformation also in the submerged part of the Campi Flegrei caldera.

3D finite element models are developed including the elastic heterogeneous structure of the medium based on the newest seismic tomography of the area of Campi Flegrei. We consider the potential action of a plumbing system composed of a general (without fixing the shape a-priori) “central” source, and a deep tabular layer placed at 7.5 km depth.

The results show that the central source is placed below the caldera floor, at 4.5 km depth, and has a shape of a thick spheroid with axes ratio of about 0.8 and 0.5. The use of the sill-like source, as suggested by several previous studies for the 2011-2013 time window, lead to three-four fold higher misfits. We interpret our solution as a thickened sill for which the vertical dimension is not negligible such as for the sill-like source, but has a finite dimension of about half the horizontal extension.

No significant contributions from the deep tabular layer are evidenced by the inversions,  but the hypothesis of a deep reservoir cannot be fully ruled out, since its activity may be masked by the central shallower source. Also, the implementation of seafloor measurements leads to results compatible with the inland GNSS data alone. 

In order to understand the evolution of the current inflation process, the results are compared to previous models from the beginning of the present unrest phase (2011 - 2013) and also previous unrest phases (1980-1984).


This work is part of the multidisciplinary project LOVE-CF, financed by the Istituto Nazionale di Geofisica e Vulcanologia, to study the dynamics of Campi Flegrei caldera.

How to cite: Astort, A., Trasatti, E., Polcari, M., Di Vito, M. A., and Acocella, V.: Volcanic activity of Campi Flegrei Caldera (Italy) during 2013-2020 from surface deformation mapping and modeling, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13251, https://doi.org/10.5194/egusphere-egu23-13251, 2023.

X2.93
|
EGU23-2589
Elisa Trasatti

Natural processes and anthropogenic activities often generate changes in the stress state of the crust, and, consequently, measurable surface deformation. Volcanic activity produces surface displacements as a result of phenomena including magma recharge/deployment and migration, and fluid flow. The accurate measurement of surface deformation is one of the most relevant parameters to measure tectonic stress accumulation and for studying the seismic cycle. Improved monitoring capabilities also capture surface deformations related to coastal erosion and its connection to climate change, landslides and deep seated gravitational slopes, and other hydrogeological hazards. In addition, anthropogenic activity such as mining and water pumping cause measurable soil displacement.

Ground deformations are measured by space and terrestrial techniques, reaching sub-millimetric accuracy. Synthetic Aperture Radar (SAR) satellites have been quickly developing in the last decades. GNSS data allows to map nearly 3D deformation patterns, but often the network consists of few benchmarks. The joint use of SAR and GNSS data compensate the intrinsic limitations of each technique. Levelling measures the geodetic height of a benchmark. Borehole dilatometers and clinometers provide derivative measurements of the surface displacements.

Theoretical models of deformation sources are commonly employed to investigate the surface displacements observed, for example, in volcanic areas or related to a seismic event. A volcanic source can be represented by a confined part of crust with a certain shape inflating/deflating because of a change in the internal magma/gas pressure. The static seismic source is ideally represented by a tabular discontinuity in the crust undergoing relative movement of both sides. Furthermore, gas reservoir exploitation, water pumping and soil consolidation, can be represented using the same models.

Volcanic and Seismic source Modelling (VSM) is an open-source Python tool to model ground deformation detected by satellite and terrestrial geodetic techniques. It allows the user to choose one or more geometrical sources as forward model among sphere, spheroid, ellipsoid, fault, and sill. It supports geodetic from several techniques: interferometric SAR, GNSS, levelling, Electro-optical Distance Measuring, tiltmeters and strainmeters. Two sampling algorithms are available, one is a global optimization algorithm based on the Voronoi cells and the second follows a probabilistic approach to parameters estimation based on the Bayes theorem. VSM can be executed as Python script, in Jupyter Notebook environments or by its Graphical User Interface. Its broad applications range from high level research to teaching, from single studies to near real-time hazard estimates. Potential users range from early career scientists to experts. It is freely available on GitHub (https://github.com/EliTras/VSM). In this contribution I show the functionalities of VSM and test cases.

How to cite: Trasatti, E.: Volcanic and Seismic source Modelling (VSM) - An open tool for geodetic data modelling, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2589, https://doi.org/10.5194/egusphere-egu23-2589, 2023.

X2.94
|
EGU23-5317
Valerio Acocella, Federico Galetto, Andrew Hooper, and Marco Bagnardi

Forecasting eruption is the ultimate challenge for volcanology. While there has been some success in forecasting eruptions hours to days beforehand1, reliable forecasting on a longer timescale remains elusive. Here we show that magma inflow rate, derived from surface deformation, is an indicator of the probability of magma transfer towards the surface, and thus eruption, for basaltic calderas. Inflow rates ≥0.1 km3/year promote magma propagation and eruption within 1 year in all assessed case studies, whereas rates less than 0.01 km3/year do not lead to magma propagation in 89% of cases. We explain these behaviours with a viscoelastic model where the relaxation timescale controls whether the critical overpressure for dike propagation is reached or not. Therefore, while surface deformation alone is a weak precursor of eruption, estimating magma inflow rates at basaltic calderas provides improved forecasting, substantially enhancing our capacity of forecasting weeks to months ahead of a possible eruption.

How to cite: Acocella, V., Galetto, F., Hooper, A., and Bagnardi, M.: Forecasting the fate of unrest at basaltic calderas, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5317, https://doi.org/10.5194/egusphere-egu23-5317, 2023.

X2.95
|
EGU23-12984
Pierdomenico Romano, Bellina Di Lieto, Agata Sangianantoni, Silvia Scarpetta, Giovanni Messuti, and Roberto Scarpa

The characterization of volcano state is not a simple task due the complexity of physics processes underway. Understanding their evolution prior to and during eruptions is a critical point for identifying transitions in volcanic state. Recent developments in the field of Machine Learning (ML) have proven to be very useful and efficient for automatic discrimination, decision, prediction, clustering and information extraction in many fields, including volcanology. In Romano et al. (2022) the use of ML algorithms led to classify strain VLP families related with changes in volcano dynamics prior of paroxysmal eruptions: algorithms have been able to discriminate little differences in VLPs shape and to find a correspondence among a higher number of families and volcanic phenomenologies. For paroxysmal events occurring outside any long-lasting eruption, the initial success of our approach, although applied only to the few available examples, could permit us to anticipate the time of alert to several days, instead of few minutes, by detecting medium-term strain anomalies: this could be crucial for risk mitigation for inhabitants and tourists. 

The neural network method used in previous analysis has been extended to a wider (2007-2022) period to verify that families found in the previous narrower time interval were still present. We tried, then, to associate families with volcanic activity, confirming the conceptual model previously introduced (Mattia et al., 2021 and   Romano et al., 2022), capable of explaining the changes found. Our innovative analysis of dynamic strain, systematically conducted on several years of available data, may be used to provide an early-warning system also on other open conduit active volcanoes.

Valuable information is embedded in the data used in the current work, which could be used not only for scientific purposes but also by civil protection for monitoring reasons. Such a variety of possible usage needs the setting of principles and legal arrangements to be implemented in order to ensure that data will be properly and ethically managed and in turn can be used and accessed by the scientific community.

How to cite: Romano, P., Di Lieto, B., Sangianantoni, A., Scarpetta, S., Messuti, G., and Scarpa, R.: Dynamic strain anomalies detection at Stromboli from 2007 eruptive phase using machine learning, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12984, https://doi.org/10.5194/egusphere-egu23-12984, 2023.

X2.96
|
EGU23-13534
|
ECS
|
Siyuan Zhao, Simon McClusky, Meghan Miller, and Phil Cummins

In 2018, four deadly (Mw 6.2 to 6.9) earthquakes struck the north coast of Lombok Island, on 28 July, 5August, and 19 August, distributed between the Flores back-arc thrust and the Rinjani-Samalas volcanic complex, causing hundreds of fatalities and extensive damage. We performed a comprehensive analysis of relocated aftershocks, static coulomb stress changes, and co-seismic and post-seismic deformation, to improve our understanding of this earthquake sequence. The fault geometries and slip distributions of the three mainshocks are modelled by inverting the co-seismic deformation imaged using an interferometric analysis of Sentinel-1 synthetic aperture radar (InSAR) measurements, based on rectangular dislocations embedded in a multi-layered elastic half-space. The earthquake sequence aftershocks were analysed using an unsupervised learning method (ST-DBSCAN) to cluster these relocated aftershocks so that we can identify the source of each aftershock. We used a time-series consisting of 658 descending and 370 ascending Sentinal-1 InSAR interferograms to investigate the time-dependent post-seismic deformation in the two years following the Lombok 2018 earthquake sequence, deriving a combined model that simulates the viscoelastic relaxation and afterslip simultaneously. The Coulomb stress change modelling based on the co-seismic and post-seismic rupture models indicates about 1 MPa of extensional stress change at 10 to 20 km of depth and 0.5 Mpa extensional stress change at 15 to 25 km of depth around the Barujari Crater region, respectively, which affects the open of the magma conduct, reflected as caldera-scale deflation and inflation. To quantify the influence of the earthquake sequence on the spatiotemporal deformation pattern of the volcano edifice, we extended our InSAR time-series range forward to the year 2014, just prior to the two eruptions that occurred on 25th October 2015 and 1st August 2016, and perform Principal Component Analysis to investigate the time-dependent inflation and deflation signals. We modelled the volume change and the location of the volcano pressure source for a better understanding of how changes in the magma body and magma movement may have been influenced by the 2018 Lombok earthquake sequence. A double-source compound model is used to invert the parameters of the magma chamber, including a shallow Moji point pressure source centred at 1.3 km north of the Barujari cone, and a deep source centred at 1.5 km northeast of the Rinjani cone, at ~3.9 km and ~3.5 km depth below the sea level respectively. We also used a uniform sill and dike combined model to interpret the co-eruptive signals surrounding the observed eruptive fissures. Our best-fit dike is nearly vertical, reaching a depth of 2 km below sea level with an opening of 8.5 cm, and the sill is at the depth of 3.1 km with a contraction of 40 cm.

How to cite: Zhao, S., McClusky, S., Miller, M., and Cummins, P.: The impact of the 2018 Lombok earthquake sequence, Indonesia on the unrest Rinjani-Samalas volcanic complex inferred from the time-dependent seismic and volcanic source models, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13534, https://doi.org/10.5194/egusphere-egu23-13534, 2023.

X2.97
|
EGU23-16329
Umberto Tammaro, Vittorio Romano, Josè Arnoso, Maite Benavent, Umberto Riccardi, Fuensanta Montesinos, Emilio Velez, and Michele Meo

Lanzarote is the most northeast and together with Fuerteventura is the oldest island of the Canarian Archipelago (Spain), which is located on a transitional zone, a passive margin, between oceanic and continental crust. The last volcanic eruption in Lanzarote was a 7 years voluminous eruptive cycle, occurred during the 18th century. Historical seismicity registered in the region, is customarily attributed to diffuse tectonic activity.

This study is intended to contribute to understanding the surface thermal anomalies and the active tectonics on Lanzarote island, mainly in the Timanfaya volcanic area, which is located to the southwest of the island and covers the land extension generated by the last eruption..

First, we describe the steps taken to implement a thermo-fluid-dynamics model to study the surface thermal anomalies detected at the Timanfaya volcanic area after the volcanic activity that took place between 1730 and 1736. The origin of these anomalies is acknowledged to be due to the intrusion of a magma body and its consequent cooling, but which still might have very high temperature. This hypothesis is based on the fact that the cooling of basaltic magma, which has an initial temperature of 1200 °C, takes about 104 ÷105 years, as indicated by some authors. Our physical model consists of a cooling magma body, with a radius of 300 m, located at a depth of 4 km and with a temperature of 800 degrees (1073,15 K).

The model was developed in three steps: 1) accounting for the energy balance only, 2) both the energy and the momentum balance are accounted for, 3) mass balance is accounted too.

The three thermo-fluid dynamic models are based on a finite element modelling (FEM). The novelty of our model consists in including both the steady and unsteady (transient) phase, not considered in analytical solutions under purely stationary conditions developed in past modelling by other authors.

Second, we describe a detailed geodetic continuous monitoring in Timanfaya volcanic area, where, as mentioned, the most intense geothermal anomalies of Lanzarote are located.

We report on the analysis of about 6 years of CGNSS data collected on a small network consisting in 9 permanent stations, spread over Timanfaya area in Lanzarote Island. The GNSS stations are operated by several owners: the Institute of Geosciences, IGEO, DiSTAR, the Geodesy Research Group of University Complutense of Madrid, the Cartographical Service of the Government of Canary Islands and the National Geographic Institute of Spain.

Finally, we attempt to interpret the thermo-fluid dynamic model and the observed ground deformations in light of the tectonic framework derived from state-of-the-art geophysical studies.

How to cite: Tammaro, U., Romano, V., Arnoso, J., Benavent, M., Riccardi, U., Montesinos, F., Velez, E., and Meo, M.: Unsteady thermo-fluid-dynamics modelling of Timanfaya volcanic area (Lanzarote,Canary Islands) and present-day ground deformation, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16329, https://doi.org/10.5194/egusphere-egu23-16329, 2023.