- 1NIOZ - Royal Netherlands Institute for Sea Research, Ocean Systems, Den Burg, Netherlands (www.nioz.nl/dust)
- 2VU - Vrije Universiteit Amsterdam, Faculty of Science, Dept of Earth Sciences, Amsterdam, the Netherlands
- 3Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Athens, Greece (proestakis@noa.gr)
- 4School of Environmental Engineering, Technical University of Crete, Chania, Greece
- 5BSC - Barcelona Supercomputing Center, Barcelona, Spain
- 6ICREA - Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- 7Research and Development Department, Norwegian Meteorological Institute, Oslo, Norway
- 8Research Centre for Atmospheric Physics and Climatology, Academy of Athens, Athens, Greece
- 9School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- 10Universitat Politècnica de Catalunya, Barcelona, Spain
- 11--now at-- European Centre for Medium-Range Weather Forecasts, Robert-Schuman-Platz 3, 53175 Bonn, Germany
- 12--now at-- WMO - World Meteorological Organisation, Science and Innovation Department, 1201 Geneva, Switzerland
- 13Research Department, European Centre for Medium-Range Weather Forecasts, Reading, UK
The global ocean is a key component to the Earth’s climate system, absorbing atmospheric energy in excess and exchanging as a sink climate-relevant gases with the atmosphere. More specifically, through the uptake of atmospheric CO2 and acting as carbon storage, through the processes of biological pump and solubility pump, helps to mitigate anthropogenic CO2 increase. Moreover, the ocean enables phytoplankton photosynthesis, impacts ocean color, light penetration into deeper layers, and sea surface temperature, eventually modulating weather and resulting to feedback effects on climate. However, primary production highly depends on the spatial distribution of input nutrients from the atmosphere, with iron (Fe) availability the most important limiting factor for phytoplankton growth. Across the open ocean, the principal source of Fe is considered atmospheric mineral dust, transported over distances of thousands of kilometers prior removal through wet deposition or gravitational settling.
The present study provides quantification of the amount of atmospheric dust deposited into the broader Atlantic Ocean. Based on Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) routine observations on atmospheric dust, the primary instrument onboard Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and meridional and zonal wind components provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5), the atmospheric dust fluxes and the dust deposited component across the tans-Atlantic transits are estimated. On the basis of more than sixteen years (12/2006-11/2022) of Earth Observations, and for the Atlantic Ocean region extending between latitudes 60°S and 40°N, the annual-mean amount of deposited dust is estimated at 274.79 ± 31.64 Tg, of which 243.98 ± 23.89 Tg is deposited into the North Atlantic Ocean and 30.81 ± 10.49 Tg into the South Atlantic Ocean. Moreover, a negative statistically significant decreasing trend in dust deposition into the Atlantic Ocean for this period is revealed, characterized by slope -13.35 Tg yr-1 and offset 306.97 Tg.
The climate data record is evaluated against high quality sediment-trap measurements of deposited lithogenic material implemented as reference dataset, demonstrating the protentional of the established dataset to be used in a wide range of applications, including filling geographical and temporal gaps in sediment-trap measurements, aiding model simulation evaluations, uncovering physical processes in the dust cycle from emission to deposition, and enhancing our understanding of dust's biogeochemical impacts on ocean ecosystems, as well as its effects on weather and climate.
Acknowledgements
This research was supported by the Dust Observation and Modelling Study (DOMOS) under ESA contract number 4000135024/21/I-NB. Emmanouil Proestakis acknowledges support by the AXA Research Fund for postdoctoral researchers under the project entitled “Earth Observation for Air-Quality – Dust Fine-Mode (EO4AQ-DustFM)”.
How to cite: Stuut, J.-B., Proestakis, E., Amiridis, V., Pérez Garcia-Pando, C., Tsyro, S., Griesfeller, J., Gkikas, A., Georgiou, T., Gonçalves Ageitos, M., Escribano, J., Myriokefalitakis, S., Bergas Masso, E., Di Tomaso, E., Basart, S., and Benedetti, A.: Earth Observations and Atmospheric Dust: unveiling Atlantic Ocean deposition, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-11653, https://doi.org/10.5194/egusphere-egu25-11653, 2025.