CL4.14 | Aeolian dust: initiator, player, and recorder of environmental change
EDI PICO
Aeolian dust: initiator, player, and recorder of environmental change
Co-organized by AS3/BG1/CR5/GM6
Convener: Jan-Berend Stuut | Co-conveners: Claire Ryder, Clarissa Baldo, Martina Klose

The interactions between aerosols, climate, weather, and society are among the large uncertainties of current atmospheric research. Mineral dust is an important natural source of aerosol with significant implications on radiation, cloud microphysics, atmospheric chemistry, and the carbon cycle via the fertilization of marine and terrestrial ecosystems. Together with other light-absorbing particles, dust impacts snow and ice albedo and can accelerate glacier melt. In addition, properties of dust deposited in sediments and ice cores are important (paleo-)climate indicators.

This interdivisional session -- building bridges between the EGU divisions AS, CL, CR, SSP, BG and GM -- had its first edition in 2004 and it is open to contributions dealing with:

(1) measurements of all aspects of the dust cycle (emission, transport, deposition, size distribution, particle characteristics) with in situ and remote sensing techniques,
(2) numerical simulations of dust on global, regional, and local scales,
(3) meteorological conditions for dust storms, dust transport and deposition,
(4) interactions of dust with clouds and radiation,
(5) influence of dust on atmospheric chemistry,
(6) fertilization of ecosystems through dust deposition,
(7) interactions with the cryosphere, including also aerosols other than dust,
(8) any study using dust as a (paleo-)climate indicator, including sediment archives in loess, ice cores, lake sediments, ocean sediments and dunes,
(9) impacts of dust on climate and climate change, and associated feedbacks and uncertainties,
(10) implications of dust for health, transport, energy systems, agriculture, infrastructure, etc.

We especially encourage the submission of papers that integrate different disciplines and/or address the modelling of past, present, and future climates.

The interactions between aerosols, climate, weather, and society are among the large uncertainties of current atmospheric research. Mineral dust is an important natural source of aerosol with significant implications on radiation, cloud microphysics, atmospheric chemistry, and the carbon cycle via the fertilization of marine and terrestrial ecosystems. Together with other light-absorbing particles, dust impacts snow and ice albedo and can accelerate glacier melt. In addition, properties of dust deposited in sediments and ice cores are important (paleo-)climate indicators.

This interdivisional session -- building bridges between the EGU divisions AS, CL, CR, SSP, BG and GM -- had its first edition in 2004 and it is open to contributions dealing with:

(1) measurements of all aspects of the dust cycle (emission, transport, deposition, size distribution, particle characteristics) with in situ and remote sensing techniques,
(2) numerical simulations of dust on global, regional, and local scales,
(3) meteorological conditions for dust storms, dust transport and deposition,
(4) interactions of dust with clouds and radiation,
(5) influence of dust on atmospheric chemistry,
(6) fertilization of ecosystems through dust deposition,
(7) interactions with the cryosphere, including also aerosols other than dust,
(8) any study using dust as a (paleo-)climate indicator, including sediment archives in loess, ice cores, lake sediments, ocean sediments and dunes,
(9) impacts of dust on climate and climate change, and associated feedbacks and uncertainties,
(10) implications of dust for health, transport, energy systems, agriculture, infrastructure, etc.

We especially encourage the submission of papers that integrate different disciplines and/or address the modelling of past, present, and future climates.