EGU25-13340, updated on 15 Mar 2025
https://doi.org/10.5194/egusphere-egu25-13340
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
Oral | Thursday, 01 May, 11:25–11:35 (CEST)
 
Room -2.92
Digital Ecosystem for Time Series Data Management in Earth System Science
David Schäfer1, Martin Abbrent1, Nils Brinckmann2, Florian Gransee1, Joost Hemmen1, Tobias Kuhnert1, Ralf Kunkel3, Christof Lorenz4, Peter Lünenschloß1, Bert Palm1, Thomas Schnicke1, Hylke van der Schaaf5, and Jan Bumberger1
David Schäfer et al.
  • 1Helmholtz Centre for Environmental Research, Germany (david.schaefer@ufz.de)
  • 2GFZ Helmholtz Centre for Geosciences
  • 3Forschungszentrum Jülich
  • 4Karlsruhe Institute of Technology – KIT
  • 5Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB

Understanding and managing the Earth System requires sustainable, interdisciplinary approaches to data accessibility, integration, and processing. To address these challenges, we present a modular and scalable digital ecosystem designed to enhance earth data science and support multidisciplinary applications [1]. Adhering to the FAIR data as well as the FAIR research software principles, the system employs standardized interfaces, and open-source technologies to foster collaboration across disciplines, extending beyond Earth System Sciences.

The ecosystem comprises three core components: (i) the Sensor Management System (SMS) for detailed metadata registration and management [2]; (ii) time.IO, a platform for efficient storage, transfer, and real-time visualization of time series data [3]; and (iii) the System for Automated Quality Control (SaQC), which ensures data integrity through automated data analysis and quality assurance [4,5]. Developed, maintained, and distributed as dedicated projects, these components integrate seamlessly into a coherent time series data management system. Leveraging widely adopted solutions and standards such as the OGC SensorThings API, OGC SensorML and the EUDAT B2INST persistent identifier, the system ensures compatibility and integration across research infrastructures, software systems, and diverse disciplines.

This cloud-ready and highly adaptable ecosystem supports deployments from small-scale local research projects to large-scale international environmental monitoring networks. It provides a user centric solution for storing, analyzing, and visualizing data. The use of established metadata standards and the community-driven development of metadata schemes and semantic annotations ensure consistency, interoperability, and reusability of metadata and data formats across various applications The applicability of the proposed ecosystem for use cases from Earth System Sciences and its usability across all stages of a typical sensor data lifecycle will be demonstrated using Cosmic Ray Neutron Sensing data as an illustrative example.

By aligning user needs with sustainable software solutions, this ecosystem facilitates FAIR-compliant practices, supports scientific innovation, and promotes robust, transparent research in Earth System sciences.

 

References:

[1] Bumberger, J., Abbrent, M., Brinckmann N., Hemmen, J., Kunkel, R., Lorenz, C., Lünenschloß, P., Palm, B., Schnicke, T., Schulz, C., van der Schaaf, H., and Schäfer, D. (2025). Digital Ecosystem for FAIR Time Series Data Management in Environmental System Science. SoftwareX (accepted)

[2] Brinckmann, N., Alhaj Taha, K., Kuhnert, T., Abbrent, M., Becker, W., Bohring, H., Breier, J., Bumberger, J., Ecker, D., Eder, T., Gransee, F., Hanisch, M., Lorenz, C., Moorthy, R., Nendel, L. J., Pongratz, E., Remmler, P., Rosin, V., Schaeffer, M., Schaldach, M., Schäfer, D., Sielaff, D., & Ziegner, N. (2024). Sensor management system - SMS (1.17.1). Zenodo. https://doi.org/10.5281/zenodo.13329925

[3] Schäfer, D., Abbrent, M., Gransee, F., Kuhnert, T., Hemmen, J., Nendel, L., Palm, B., Schaldach, M., Schulz, C., Schnicke, T., & Bumberger, J. (2023). timeIO - A fully integrated and comprehensive timeseries management system (0.1). Zenodo. https://doi.org/10.5281/zenodo.8354839

[4] Schmidt, L., Schäfer, D., Geller, J., Lünenschloss, P., Palm, B., Rinke, K., Rebmann, C., Rode, M., & Bumberger, J. (2023). System for automated Quality Control (SaQC) to enable traceable and reproducible data streams in environmental science. Environmental Modelling & Software, 105809. https://doi.org/10.1016/j.envsoft.2023.105809

[5] Schäfer, D., Palm, B., Lünenschloß, P., Schmidt, L., Schnicke, T., & Bumberger, J. (2024). System for automated Quality Control - SaQC (v2.6.0). Zenodo. https://doi.org/10.5281/zenodo.5888547

How to cite: Schäfer, D., Abbrent, M., Brinckmann, N., Gransee, F., Hemmen, J., Kuhnert, T., Kunkel, R., Lorenz, C., Lünenschloß, P., Palm, B., Schnicke, T., Schaaf, H. V. D., and Bumberger, J.: Digital Ecosystem for Time Series Data Management in Earth System Science, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-13340, https://doi.org/10.5194/egusphere-egu25-13340, 2025.