- 1Leibniz Institute for Tropospheric Research, Modeling of Atmospheric Processes, Leipzig, Germany (faust@tropos.de)
- 2Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
- 3Institute of Meteorology, Department of Earth Science, Freie Universität (FU) Berlin, Berlin, Germany
Mineral dust emissions from arable land are a significant environmental concern. Fugitive dust emissions commonly arise during mechanical activities such as tilling and harvesting, while aeolian emissions occur from sparsely vegetated cropland, particularly during the transitional phases between fresh tillage and substantial vegetation growth and hence coverage of the bare soil. Suspended in the atmosphere, dust aerosol particles originating from arable land suposedly affect human health, reduce air quality, and can economically impact agricultural productivity due to soil degradation and reduced yields.
Agricultural dust emissions are often overlooked in coupled atmosphere-aerosol models, perhaps due to the complex conditions that lead to emissions. Fugitive emissions are highly variable, influenced by unpredictable human activities, while aeolian emissions require accurate descriptions of vegetation dynamics during transitional periods.
To address these gaps, we developed modelling strategies to simulate both fugitive and aeolian emissions. Fugitive emissions were analysed using a Lagrangian particle dispersion model designed to capture the turbulent mixing of dust particles in the atmospheric boundary layer. A case study based on measured tilling emissions demonstrated how atmospheric stratification can limit or amplify dust plumes and their range of transport.
For aeolian emissions, a new parameterisation was implemented in the atmosphere-aerosol model COSMO-MUSCAT, utilising high-resolution satellite data to represent vegetation cover. We tested our model for a dust emission event in Poland in 2019, where the model showed good agreement with satellite observations and ground-based measurements.
Ultimately, our modelling efforts provide insights into the dynamics, spatial distribution, and broader impacts of agricultural dust emissions, contributing to a more comprehensive understanding of their role in the atmosphere.
How to cite: Faust, M., Wagner, R., Wolke, R., Münch, S., Funk, R., and Schepanski, K.: Modelling of Dust Emissions from Agricultural Sources in Europe, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-13655, https://doi.org/10.5194/egusphere-egu25-13655, 2025.