- 1Departamento de Geología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Barrio Sarriena s/n, 48940 Leioa, Spain
- 2Dipartimento di Scienze della Terra e del Mare, Università degli Studi di Palermo, Via Archirafi 22, 90123 Palermo, Italy
- 3ETS de Ingenieros en Topografía, Geodesia y Cartografía, Universidad Politecnica de Madrid, 28031-Madrid, Spain
- 4Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Nazionale Terremoti, Italy
- 5Dipartimento di Scienze, Università degli Studi “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
- 6Centro inteRUniversitario per l’analisi Sismotettonica Tridimensionale (CRUST), 66100 Chieti, Italy
- 7Departamento de Física, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
- 8Departamento de Geodinámica, Universidad de Granada, Calle Fuentenueva s/n, 18071 Granada, Spain
- 9Instituto Andaluz de Ciencias de la Tierra (IACT), Universidad de Granada, Calle Fuentenueva s/n, 18071 Granada, Spain
- 10Universidad Internacional de La Rioja, Av. de la Paz, 137, 26006 Logroño, Spain
- 11Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo—Sezione di Catania, Piazza Roma 2, 95125 Catania, Italy
- 12Continental Margins Group, Instituto de Ciencias del Mar (CSIC), Pg. Marítim de la Barceloneta, 37, 08003 Barcelona, Spain,
- 13Instituto de Geociencias (CSIC, UCM). Calle del Doctor Severo Ochoa 7, Ciudad Universitaria, 28040 Madrid, Spain.
- 14Istituto di Geologia Ambientale e Geoingegneria, Consiglio Nazionale delle Ricerche (CNR-IGAG), P.le A. Moro, 5, 00185 Rome, Italy
Iberia represents the westernmost tectonic region involved in the Eurasia-Nubia convergence, playing a key role in shaping the plate tectonics of the westernmost Mediterranean. It is affected by alpine deformation in the Pyrenees in the north and the Gibraltar Arc in the south, alongside other internal mountain ranges. Toward the south, the region is further deformed in the Atlas and Tell Cordilleras.
This study aims to analyze and compare the active stress and strain fields with seismicity and active faults to discuss the geodynamic processes, determine the main active structures, and assess how stresses are accommodated, whether seismically or aseismically.
The stress field is derived from an extensive compilation of available crustal earthquake focal mechanism solutions across the region. The data are inverted using the STRESSINVERSE software (Vavryčuk, 2014) on a 0.5° spaced grid, requiring a minimum of eight focal mechanism for cell. The geodetic dataset includes nearly 500 continuous GNSS stations, with time series spanning up to 25 years, along with 25 episodic GNSS stations. Data processing is performed using GAMIT/GLOBK (Herring et al., 2010), following the methodology outlined by Palano et al. (2020). The resulting velocity field is enhanced with other available velocity fields to increase station density. The strain field is estimated on a 0.5° grid according with the methodology illustrated by Shen et al. (2015). Finally, to compare the stress and strain fields, sHmax and eHmin are estimated.
The results show that the region is affected by NW-SE compression, causing irregular deformation. Shortening of up to 4–5 mm/yr, parallel to the compression, is mainly concentrated in southern Iberia, along the Eurasia-Nubia plate boundary, accompanied by frequent low-to-moderate seismicity. In southwestern Iberia and in the Tell Cordillera, the NW-SE compression can result in moderate-to-high seismicity. Meanwhile, both central-northern Iberia and the Atlas Cordillera undergo limited deformation under the general NW-SE compression. The first is characterized by zones of low seismicity linked to normal and strike-slip faults. The Atlas Cordillera, in contrast, exhibits sporadic but moderate-to-high magnitude seismicity related to thrusting. The stress pattern significantly changes in the westernmost Gibraltar Arc and in the Pyrenees. The Gibraltar Arc characterises by a slightly rotated NNE-SSW striking compressional axis, while the shortening aligns E-W. The former observation and the absence of seismicity in the front of the arc suggest aseismic displacement to the west of the Gibraltar Arc, perpendicular to the Eurasia-Nubia convergence. Finally, the data show that the shortening in the Pyrenees has ceased, and stress suggest a N-S extension, likely related to isostatic readjustment of the mountain range.
- Herring, T. A., et al. (2010). GAMIT Reference Manual, GPS analysis at MIT, Release 10.4, Dept. of Earth Atmos. and Planet. , Mass. Inst. of Technol., Cambridge, MA, 171pp.
- Palano, M., et al. (2020). Geopositioning time series from offshore platforms in the Adriatic Sea. Scientific Data, 7(1), 373.
- Vavryčuk, V. (2014). Iterative joint inversion for stress and fault orientations from focal mechanisms.Geophysical Journal International, 199(1), 69-77.
- Shen, Z. K., et al. (2015). Optimal interpolation of spatially discretized geodetic data. Bulletin of the Seismological Society of America, 105(4), 2117-2127.
How to cite: Madarieta-Txurruka, A., Prieto, J. F., Escayo, J., Pietrolungo, F., Peláez, J. A., Galindo-Zaldívar, J., Henares, J., Sparacino, F., Ercilla, G., Fernández, J., and Palano, M.: Stress and strain fields in the Iberian Peninsula and adjacent Mountain Ranges, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-19452, https://doi.org/10.5194/egusphere-egu25-19452, 2025.