- 1Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, (lien.rodriguez@uss.cl)
- 2Department of Electrical Engineering, Universidad de Concepción
- 3Escuela de Ingeniería en Medio Ambiente y Sustentabilidad, Escuela de Ingeniería Forestal, Hémera Centro de Observación de la Tierra Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor
- 4Centre for Wireless Communications, University of Oulu
- 5Instituto Universitario de Investigación y Desarrollo Tecnológico, Universidad Tecnológica Metropolitana
- 6Departamento de Ciencias Ambientales, Facultad de Recursos Naturales, Universidad Católica de Temuco
- 7Géosciences Environnement Toulouse, UMR 5563, Université de Toulouse
- 8ISPA, UMR 1391 INRAE, Bordeaux Sciences Agro, UMR 1391, 33140 Villenave-d’Ornon
- 9Facultad de Ciencias Ambientales, Universidad de Concepción
This study examines the dynamics of limnological parameters of a South American lake located in southern Chile with the objective of predicting chlorophyll-a levels, which are a key indicator of algal biomass and water quality, by integrating combined remote sensing and machine learning techniques. Employing four advanced machine learning models, the research focuses on the estimation of chlorophyll-a concentrations at three sampling stations within Lake Ranco. The data span from 1987 to 2020 and are used in three different cases: using only in situ data (Case 1), using in situ and meteorological data (Case 2), using in situ, and meteorological and satellite data from Landsat and Sentinel missions (Case 3). In all cases, each machine learning model shows robust performance, with promising results in predicting chlorophyll-a concentrations. Among these models, LSTM stands out as the most effective, with the best metrics in the estimation, the best performance was Case 1, with R2 = 0.89, an RSME of 0.32 μg/L, an MAE 1.25 μg/L and an MSE 0.25 (μg/L)2, consistently outperforming the others according to the static metrics used for validation. This finding underscores the effectiveness of LSTM in capturing the complex temporal relationships inherent in the dataset. However, increasing the dataset in Case 3 shows a better performance of TCNs (R2 = 0.96; MSE = 0.33 (μg/L)2; RMSE = 0.13 μg/L; and MAE = 0.06 μg/L). The successful application of machine learning algorithms emphasizes their potential to elucidate the dynamics of algal biomass in Lake Ranco, located in the southern region of Chile. These results not only contribute to a deeper understanding of the lake ecosystem but also highlight the utility of advanced computational techniques in environmental research and management.
How to cite: Rodríguez-López, L., Bravo Alvarez, L., Duran Llacer, I., Ruíz-Guirola, D., Montejo-Sánchez, S., Martínez-Retureta, R., Bourel, L., Frappart, F., and Urrutia, R.: Leveraging Machine Learning and Remote Sensing for Water Quality Analysis in Lake Ranco, Southern Chile, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-240, https://doi.org/10.5194/egusphere-egu25-240, 2025.