EGU25-3373, updated on 14 Mar 2025
https://doi.org/10.5194/egusphere-egu25-3373
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
PICO | Friday, 02 May, 10:53–10:55 (CEST)
 
PICO spot 1, PICO1.5
Analysis of PM2.5 Impacts from Agricultural Vinyl Waste Treatment Processes and Uncollected Waste
Hyunjun Park1, Minseon Park1, Namhoon Lee2, and Hui-Young Yun2
Hyunjun Park et al.
  • 1Department of Environmental Engineering, Anyang university, Anyang, Gyeonggi, Republic of Korea.(pook0212@hanmail.net)
  • 2Department of Environmental and Energy Engineering, Anyang university, Anyang, Gyeonggi, Republic of Korea.

The treatment of agricultural plastic waste is a critical source of fine dust (PM2.5) emissions, contributing significantly to air pollution. Uncollected plastic waste, predominantly subjected to open-air incineration, exacerbates this issue, underscoring the need for comprehensive management strategies.

This study aims to predict PM2.5 emissions from agricultural plastic waste treatment processes and quantify the contribution of uncollected plastic waste to air pollution, providing a novel analysis of the relative environmental impact of these two waste management pathways. Using the CAPSS model and process-specific emission factors, PM2.5 emissions from shredding, crushing, and sorting processes were estimated based on the annual average agricultural plastic waste generation of 314,000 tons from 2016 to 2021.

Predicted PM2.5 emissions per ton of treated waste were 0.00012 kg, 0.00075 kg, and 0.00043 kg for shredding, crushing, and sorting processes, respectively. By 2030, cumulative emissions from these processes are expected to reach 25.09 kg, 156.84 kg, and 89.92 kg. In contrast, uncollected vinyl waste subjected to open-air incineration is estimated to generate approximately 725,779.45 kg of PM2.5 by 2030, a figure nearly 2,600 times higher than emissions from treated waste.

The findings highlight the disproportionate environmental impact of uncollected vinyl waste compared to treated waste. This study underscores the urgency of improving collection rates and optimizing treatment processes for agricultural vinyl waste. Policy recommendations include expanding treatment facilities, fostering private-sector recycling initiatives, and enforcing stricter regulations on open-air incineration to mitigate fine dust emissions effectively. Future research should explore the comprehensive evaluation of waste management systems and the development of advanced technologies for reducing PM2.5 emissions.

Acknowledgments

This research was supported by Particulate Matter Management Specialized Graduate Program through the Korea Environmental Industry & Technology Institute(KEITI) funded by the Ministry of Environment(MOE)

How to cite: Park, H., Park, M., Lee, N., and Yun, H.-Y.: Analysis of PM2.5 Impacts from Agricultural Vinyl Waste Treatment Processes and Uncollected Waste, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-3373, https://doi.org/10.5194/egusphere-egu25-3373, 2025.