EGU25-8497, updated on 14 Mar 2025
https://doi.org/10.5194/egusphere-egu25-8497
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
Poster | Tuesday, 29 Apr, 16:15–18:00 (CEST), Display time Tuesday, 29 Apr, 14:00–18:00
 
Hall X5, X5.158
Input and output fluxes of surface CO2 throughout the lower Cenozoic
Luca Castrogiovanni1, Pietro Sternai1,2, Claudia Pasquero1, Nicola Piana Agostinetti1, Bram Vaes1, and Jack Longman3
Luca Castrogiovanni et al.
  • 1Milano Bicocca, Department of Earth and Environmental Sciences., Milano (MI), Italy (l.castrogiovanni@campus.unimib.it)
  • 2GFZ German Research Centre for Geosciences, Potsdam, Germany
  • 3Department of Geography and Environmental Sciences Department, Northumbria University, UK

Long-term Cenozoic climate trends result from changes in the geological carbon cycle and associated surface input and output CO2 fluxes largely due to magmatic emissions and weathering of silicate minerals (Berner & Lasaga, 1989). Proxy records allow to detect absolute values of CO2 in different reservoirs to define major Cenozoic climatic events (e.g., PETM, EECO or MECO). However, interpreting the proxy-based time history of surface CO2 budget in terms of input and output CO2 fluxes is critical to assess the responsible processes behind the surface-deep carbon exchange and associated long term climate trends. Here, we use a newly developed technique (Castrogiovanni et al., 2024) based on a reversible-jump Markov chain Monte Carlo algorithm (rj-McMC) to invert the CO2 time series from the Proxy Integration Project (CENCO2PIP) (Hönisch et al., 2023) and obtain estimates of the surface input and output CO2 fluxes throughout the lower Cenozoic. We base the inversion on a general formulation of the geological carbon cycle and use the temperature time history from Hansen et al., 2023 as a further constraint to the inversion scheme. Results indicate a marked peak in the emission rate of CO2 at ˜56 Ma (PETM), enhanced CO2 emissions between 54-50 Ma (EECO) and at ˜40 Ma (MECO), whereas the output CO2 term associated to weathering responds to such variations of the input CO2 term. We conclude that magmatic CO2 emissions related to the closure of the Neo-Tethyan ocean and opening of the Nort-East Atlantic Ocean played a key role in driving lower Cenozoic climate trends.

 

References

Berner, R. A., & Lasaga, A. C. (1989). Modeling the Geochemical Carbon Cycle. 260(3), 74–81. https://doi.org/10.2307/24987179

Castrogiovanni, L., Sternai, P., Piana Agostinetti, N., & Pasquero, C. (2024). A reversible-jump Markov chain Monte Carlo algorithm to estimate paleo surface CO2 fluxes linking temperature to atmospheric CO2 concentration time series. Computers & Geosciences, 105838. https://doi.org/10.1016/J.CAGEO.2024.105838

Hansen, J. E., Sato, M., Simons, L., Nazarenko, L. S., Sangha, I., Kharecha, P., Zachos, J. C., von Schuckmann, K., Loeb, N. G., Osman, M. B., Jin, Q., Tselioudis, G., Jeong, E., Lacis, A., Ruedy, R., Russell, G., Cao, J., & Li, J. (2023). Global warming in the pipeline. Oxford Open Climate Change, 3 (1). https://doi.org/10.1093/OXFCLM/KGAD008

Hönisch, B., Royer, D. L., Breecker, D. O., Polissar, P. J., Bowen, G. J., Henehan, M. J., Cui, Y., Steinthorsdottir, M., McElwain, J. C., Kohn, M. J., Pearson, A., Phelps, S. R., Uno, K. T., Ridgwell, A., Anagnostou, E., Austermann, J., Badger, M. P. S., Barclay, R. S., Bijl, P. K., … Zhang, L. (2023). Toward a Cenozoic history of atmospheric CO2. Science, 382 (6675). https://doi.org/10.1126/SCIENCE.ADI5177/SUPPL_FILE/SCIENCE.ADI5177_SM.PDF

 

 

 

How to cite: Castrogiovanni, L., Sternai, P., Pasquero, C., Piana Agostinetti, N., Vaes, B., and Longman, J.: Input and output fluxes of surface CO2 throughout the lower Cenozoic, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-8497, https://doi.org/10.5194/egusphere-egu25-8497, 2025.