HS1.1.3 | Advancing understanding and management of PFAS pollution in terrestrial and aquatic environments
EDI
Advancing understanding and management of PFAS pollution in terrestrial and aquatic environments
Co-organized by SSS7
Convener: Luka VucinicECSECS | Co-conveners: Marie-Amélie Petre, Şebnem Arslan, David O'Connell, Fatima Ajia

Per- and polyfluoroalkyl substances (PFAS) are a group of man-made chemicals that have been extensively used worldwide for over 80 years due to their unique chemical properties, such as high stability and resistance to degradation. The widespread use of PFAS has led to pervasive contamination in terrestrial and aquatic environments, creating complex regulatory and environmental management challenges.

This session aims to contribute to a comprehensive understanding of PFAS pollution and to share effective strategies for their management and remediation/mitigation. Hence, we aim to bring together researchers and practitioners from diverse fields, including contaminant hydrogeology, environmental chemistry, toxicology, engineering, and policy, to share their insights on the occurrence, behaviour, and management of PFAS in the environment. We primarily seek contributions that explore the latest advancements in understanding PFAS pollution across different environmental matrices, including surface water, groundwater, and soils.

Topics of interest include, but are not limited to:
- The transport and fate of PFAS in terrestrial and aquatic environments,
- Modelling approaches to predict PFAS distribution and transport in various environmental settings,
- Innovative strategies and technologies for the treatment and remediation of PFAS-contaminated water, including drinking water and wastewater,
- Advancements and case studies on the successful application of PFAS remediation/mitigation techniques and their effectiveness in different environmental contexts,
- Ecotoxicological studies,
- Challenges and advancements in regulatory frameworks and policies for managing PFAS pollution, including approaches to identify and mitigate sources of PFAS contamination.

Given the complex nature of PFAS as "forever chemicals" and their ability to partition across different environmental media, this session emphasises the importance of interdisciplinary approaches and collaborative efforts to tackle the multifaceted challenges they present. We welcome studies that utilise laboratory research, field investigations, and modelling efforts, as well as contributions that discuss the implications of PFAS pollution on public and environmental health, ecological integrity, and regulatory landscapes.

Per- and polyfluoroalkyl substances (PFAS) are a group of man-made chemicals that have been extensively used worldwide for over 80 years due to their unique chemical properties, such as high stability and resistance to degradation. The widespread use of PFAS has led to pervasive contamination in terrestrial and aquatic environments, creating complex regulatory and environmental management challenges.

This session aims to contribute to a comprehensive understanding of PFAS pollution and to share effective strategies for their management and remediation/mitigation. Hence, we aim to bring together researchers and practitioners from diverse fields, including contaminant hydrogeology, environmental chemistry, toxicology, engineering, and policy, to share their insights on the occurrence, behaviour, and management of PFAS in the environment. We primarily seek contributions that explore the latest advancements in understanding PFAS pollution across different environmental matrices, including surface water, groundwater, and soils.

Topics of interest include, but are not limited to:
- The transport and fate of PFAS in terrestrial and aquatic environments,
- Modelling approaches to predict PFAS distribution and transport in various environmental settings,
- Innovative strategies and technologies for the treatment and remediation of PFAS-contaminated water, including drinking water and wastewater,
- Advancements and case studies on the successful application of PFAS remediation/mitigation techniques and their effectiveness in different environmental contexts,
- Ecotoxicological studies,
- Challenges and advancements in regulatory frameworks and policies for managing PFAS pollution, including approaches to identify and mitigate sources of PFAS contamination.

Given the complex nature of PFAS as "forever chemicals" and their ability to partition across different environmental media, this session emphasises the importance of interdisciplinary approaches and collaborative efforts to tackle the multifaceted challenges they present. We welcome studies that utilise laboratory research, field investigations, and modelling efforts, as well as contributions that discuss the implications of PFAS pollution on public and environmental health, ecological integrity, and regulatory landscapes.