AS3.23 | Remote Sensing of aerosol and clouds
EDI
Remote Sensing of aerosol and clouds
Convener: Pavel Litvinov | Co-conveners: Alexander Kokhanovsky, Luca Lelli, Yasmin Aboel Fetouh

Remote sensing of clouds and aerosols is of central importance for studying climate system processes and changes. New generations of active sensors (EarthCare), passive multi-angular polarimeters (PACE/SPEX and PACE/HARP-2, 3MI, CO2M MAP etc.) and single viewing instruments (hyperspectral Sentinel 5P/5/4, OLCI and SLSTR on Sentinel 3), will bring aerosol and cloud characterization on a new level of possibilities. This will essentially boost our understanding of the physical/chemical processes in the atmosphere, specifically aerosol-cloud interactions. Nevertheless, till now, the number of challenges and unsolved problems remain in remote sensing algorithms and their applications.

This session is aimed at the discussion of current developments, challenges and opportunities in aerosol/cloud characterization and aerosol-cloud interaction studies, using active and passive remote sensing systems. We invite submissions of theoretical, methodological, and empirical studies to advance aerosol/cloud remote sensing and to understand better aerosol-cloud interactions and their effect on climate.

Remote sensing of clouds and aerosols is of central importance for studying climate system processes and changes. New generations of active sensors (EarthCare), passive multi-angular polarimeters (PACE/SPEX and PACE/HARP-2, 3MI, CO2M MAP etc.) and single viewing instruments (hyperspectral Sentinel 5P/5/4, OLCI and SLSTR on Sentinel 3), will bring aerosol and cloud characterization on a new level of possibilities. This will essentially boost our understanding of the physical/chemical processes in the atmosphere, specifically aerosol-cloud interactions. Nevertheless, till now, the number of challenges and unsolved problems remain in remote sensing algorithms and their applications.

This session is aimed at the discussion of current developments, challenges and opportunities in aerosol/cloud characterization and aerosol-cloud interaction studies, using active and passive remote sensing systems. We invite submissions of theoretical, methodological, and empirical studies to advance aerosol/cloud remote sensing and to understand better aerosol-cloud interactions and their effect on climate.