EMRP1.3 | Advances in Petrophysics and Rock Physics: Integrating Models, Experiments, and Field Geophysics Across Scales for Geo-Reservoir Studies
EDI
Advances in Petrophysics and Rock Physics: Integrating Models, Experiments, and Field Geophysics Across Scales for Geo-Reservoir Studies
Convener: Chi Zhang | Co-conveners: Ludovic Bodet, Damien Jougnot, Eva Caspari

The development of petrophysical models, which link geophysical measurements such as electrical conductivity or seismic velocity to subsurface parameters like fluid content and hydraulic properties, is critical for characterizing subsurface properties and informing geological reservoir, hydrological, and biogeochemical studies. As geophysical techniques evolve, particularly with the rise of distributed monitoring systems, their application extends beyond static measurements. Increasingly, they are used to study dynamic processes such as fluid flow, solute transport, and biogeochemical reactions. These developments highlight the necessity of refining petrophysical relationships through multidisciplinary approaches that combine theoretical, laboratory, and field-scale studies. Each geophysical method has its own resolution and depth constraints, while complex relationships between physical properties and interfacial, geometrical, and biogeochemical characteristics further complicate the scaling of laboratory experiments to field applications, making it vital to establish accurate, adaptable petrophysical models.

This session invites contributions from diverse research communities to explore new petrophysical models, numerical simulations, laboratory experiments, and field case studies. We aim to foster interdisciplinary discussions on advancing petrophysical relationships and improving our understanding of complex subsurface processes across a wide range of natural and engineering settings, including low-carbon energy technologies and subsurface storage solutions. We encourage submissions focused on georeservoir studies that combine insights from geomechanics, geochemistry, petrophysics, and material science. Additionally, we welcome submissions on the development of cutting-edge experimental apparatus, novel sensor technologies, and innovative methods for simulating in-situ conditions.

The development of petrophysical models, which link geophysical measurements such as electrical conductivity or seismic velocity to subsurface parameters like fluid content and hydraulic properties, is critical for characterizing subsurface properties and informing geological reservoir, hydrological, and biogeochemical studies. As geophysical techniques evolve, particularly with the rise of distributed monitoring systems, their application extends beyond static measurements. Increasingly, they are used to study dynamic processes such as fluid flow, solute transport, and biogeochemical reactions. These developments highlight the necessity of refining petrophysical relationships through multidisciplinary approaches that combine theoretical, laboratory, and field-scale studies. Each geophysical method has its own resolution and depth constraints, while complex relationships between physical properties and interfacial, geometrical, and biogeochemical characteristics further complicate the scaling of laboratory experiments to field applications, making it vital to establish accurate, adaptable petrophysical models.

This session invites contributions from diverse research communities to explore new petrophysical models, numerical simulations, laboratory experiments, and field case studies. We aim to foster interdisciplinary discussions on advancing petrophysical relationships and improving our understanding of complex subsurface processes across a wide range of natural and engineering settings, including low-carbon energy technologies and subsurface storage solutions. We encourage submissions focused on georeservoir studies that combine insights from geomechanics, geochemistry, petrophysics, and material science. Additionally, we welcome submissions on the development of cutting-edge experimental apparatus, novel sensor technologies, and innovative methods for simulating in-situ conditions.