HS8.3.6 | Hydrological processes and contaminants transport in the vadose zone: Recent developments and novel insights
EDI
Hydrological processes and contaminants transport in the vadose zone: Recent developments and novel insights
Convener: Giuseppe Brunetti | Co-conveners: Efstathios Diamantopoulos, Christopher Vincent Henri, Jiri Simunek, Christine Stumpp

Emerging contaminants (e.g., PFAS, pharmaceuticals, microplastics) and climate change pose new challenges to our already fragile ecosystems. The vadose zone is a dynamically changing heterogeneous system, which plays a key role in regulating water and solute exchanges between atmosphere, vegetation, and groundwater and hosts a large portion of subsurface biochemical reactions. Understanding the interrelation between hydrological, physicochemical, and biological processes in the unsaturated zone is paramount to developing sustainable management strategies. This can solely be attained by translating novel experimental insights into well-validated modeling tools, which can benefit from recent advances in machine learning.
This session welcomes research that advances the current understanding of the vadose zone hydro-biogeochemical functioning across multiple scales, including experimental or modeling approaches, and field or simulation studies. In particular, we encourage researchers to participate with contributions on the following topics:
• Monitoring of water flow, solute transport, and biochemical reactions from the pore scale to the field scale
• Experimental investigation and numerical modeling of the reactive transport of emerging contaminants in variably-saturated porous media
• Influence of static and dynamically changing soil structures (e.g., heterogeneity) on water flow and reactive solute transport
• Transport of water and contaminants in/from the rhizosphere into the plant
• Development of novel modeling approaches to predict water and chemical transport in the vadose zone
• Novel techniques for model appraisal, including calibration, sensitivity analysis, uncertainty assessment, and surrogate-based modeling for hydro-biogeochemical vadose zone modeling

Emerging contaminants (e.g., PFAS, pharmaceuticals, microplastics) and climate change pose new challenges to our already fragile ecosystems. The vadose zone is a dynamically changing heterogeneous system, which plays a key role in regulating water and solute exchanges between atmosphere, vegetation, and groundwater and hosts a large portion of subsurface biochemical reactions. Understanding the interrelation between hydrological, physicochemical, and biological processes in the unsaturated zone is paramount to developing sustainable management strategies. This can solely be attained by translating novel experimental insights into well-validated modeling tools, which can benefit from recent advances in machine learning.
This session welcomes research that advances the current understanding of the vadose zone hydro-biogeochemical functioning across multiple scales, including experimental or modeling approaches, and field or simulation studies. In particular, we encourage researchers to participate with contributions on the following topics:
• Monitoring of water flow, solute transport, and biochemical reactions from the pore scale to the field scale
• Experimental investigation and numerical modeling of the reactive transport of emerging contaminants in variably-saturated porous media
• Influence of static and dynamically changing soil structures (e.g., heterogeneity) on water flow and reactive solute transport
• Transport of water and contaminants in/from the rhizosphere into the plant
• Development of novel modeling approaches to predict water and chemical transport in the vadose zone
• Novel techniques for model appraisal, including calibration, sensitivity analysis, uncertainty assessment, and surrogate-based modeling for hydro-biogeochemical vadose zone modeling