EMRP1.5 | Fault deformation across scales: from laboratory to geophysical observations via numerical simulations
Fault deformation across scales: from laboratory to geophysical observations via numerical simulations
Co-organized by TS1
Convener: Carolina GiorgettiECSECS | Co-conveners: Nathalie Casas, Chiara Cornelio, Pierre Romanet, Federica Paglialunga

The upscaling of laboratory results to regional geophysical observations is a fundamental challenge in geosciences. Earthquakes are inherently non-linear and multi-scale phenomena, with dynamics that are strongly dependent on the geometry and the physical properties of faults and their surrounding media. To investigate these complex processes, fault mechanisms are often scaled down in the laboratory to explore the physical and mechanical characteristics of earthquakes under controlled, yet realistic boundary conditions.
However, extrapolating these small-scale laboratory studies to large-scale geophysical observations remains a significant challenge. This is where numerical simulations become essential, serving as a bridge between scales and enhancing our understanding of fault mechanics. Together, laboratory experiments, numerical simulations, and geophysical observations are complementary and necessary to understand fault mechanisms across the different scales.
In this session, we aim to convene multidisciplinary contributions that address multiple aspects of earthquake mechanics combining laboratory, geophysical and numerical observations, including:

(i) the interaction between the fault zone and surrounding damage zone;
(ii) the thermo-hydro-mechanical processes associated with all the different stages of the seismic cycle;
(iii) bridging the gap between the different scales of fault deformation mechanisms.

We particularly encourage contributions with novel observations and innovative methodologies for studying earthquake faulting. Contributions from early career scientists are highly welcome.

The upscaling of laboratory results to regional geophysical observations is a fundamental challenge in geosciences. Earthquakes are inherently non-linear and multi-scale phenomena, with dynamics that are strongly dependent on the geometry and the physical properties of faults and their surrounding media. To investigate these complex processes, fault mechanisms are often scaled down in the laboratory to explore the physical and mechanical characteristics of earthquakes under controlled, yet realistic boundary conditions.
However, extrapolating these small-scale laboratory studies to large-scale geophysical observations remains a significant challenge. This is where numerical simulations become essential, serving as a bridge between scales and enhancing our understanding of fault mechanics. Together, laboratory experiments, numerical simulations, and geophysical observations are complementary and necessary to understand fault mechanisms across the different scales.
In this session, we aim to convene multidisciplinary contributions that address multiple aspects of earthquake mechanics combining laboratory, geophysical and numerical observations, including:

(i) the interaction between the fault zone and surrounding damage zone;
(ii) the thermo-hydro-mechanical processes associated with all the different stages of the seismic cycle;
(iii) bridging the gap between the different scales of fault deformation mechanisms.

We particularly encourage contributions with novel observations and innovative methodologies for studying earthquake faulting. Contributions from early career scientists are highly welcome.