GM10.3 | Assessing and monitoring sediment transport in natural and built environment
EDI
Assessing and monitoring sediment transport in natural and built environment
Convener: Gordon Gilja | Co-conveners: Zhixian Cao, Manish Pandey, Ana Margarida Bento, Peng Hu

Critical infrastructure, including bridges, dams, levees, pile foundations, spur dikes, and river training structures, is inevitably related to the morphodynamics of rivers, estuaries, and coastal areas. Such connections are particularly evident during post-flood assessments or after strong waves and storm surges events. While morphological changes are frequently observed on a large-scale, they are primarily driven by local factors, such as flow variability, coherent turbulent structures, sediment entrainment, and constant water-bed interactions. When infrastructure is introduced into dynamic water environments, its elements become key factors influencing morphodynamic processes. Understanding these interactions across scales is essential for sustainable water management and the long-term safety of infrastructure.

To address these challenges, it is crucial to integrate geomorphological insights into the layout, design, construction, and management of infrastructure that interacts with water flows. Despite extensive research, the stochastic nature of sediment-laden flow processes makes it challenging to establish reliable deterministic relationships between flow, erosion, and deposition.

The introduction of remote sensing and non-intrusive flow tracking methods provides new opportunities to study and quantify these processes with unprecedent spatial and temporal resolution. This session aims to provide a platform to showcase research that integrates field studies, experimental work, numerical modeling, and hybrid approaches to deepen our understanding of flow-structure interactions, morphodynamic responses to infrastructure in rivers/estuaries/coastal and nearshore areas, innovative sediment transport quantification methods, and turbulence analysis. The goal is to improve our ability to model and manage morphological change across multiple scales.
We invite contributions that focus on, but are not limited to, the following topics:
● Examining the impact of built structures on water flow and morphology
● Understanding the role of flow variability, sediment entrainment, and water-bed interactions in driving morphological change;
● Exploring remote sensing and non-intrusive methods to more accurately study and quantify flow and bed morphological processes;
● Understanding flow-structure interactions in hydraulic infrastructure;
● Developing innovative methods to monitor and quantify sediment transport dynamics.

Critical infrastructure, including bridges, dams, levees, pile foundations, spur dikes, and river training structures, is inevitably related to the morphodynamics of rivers, estuaries, and coastal areas. Such connections are particularly evident during post-flood assessments or after strong waves and storm surges events. While morphological changes are frequently observed on a large-scale, they are primarily driven by local factors, such as flow variability, coherent turbulent structures, sediment entrainment, and constant water-bed interactions. When infrastructure is introduced into dynamic water environments, its elements become key factors influencing morphodynamic processes. Understanding these interactions across scales is essential for sustainable water management and the long-term safety of infrastructure.

To address these challenges, it is crucial to integrate geomorphological insights into the layout, design, construction, and management of infrastructure that interacts with water flows. Despite extensive research, the stochastic nature of sediment-laden flow processes makes it challenging to establish reliable deterministic relationships between flow, erosion, and deposition.

The introduction of remote sensing and non-intrusive flow tracking methods provides new opportunities to study and quantify these processes with unprecedent spatial and temporal resolution. This session aims to provide a platform to showcase research that integrates field studies, experimental work, numerical modeling, and hybrid approaches to deepen our understanding of flow-structure interactions, morphodynamic responses to infrastructure in rivers/estuaries/coastal and nearshore areas, innovative sediment transport quantification methods, and turbulence analysis. The goal is to improve our ability to model and manage morphological change across multiple scales.
We invite contributions that focus on, but are not limited to, the following topics:
● Examining the impact of built structures on water flow and morphology
● Understanding the role of flow variability, sediment entrainment, and water-bed interactions in driving morphological change;
● Exploring remote sensing and non-intrusive methods to more accurately study and quantify flow and bed morphological processes;
● Understanding flow-structure interactions in hydraulic infrastructure;
● Developing innovative methods to monitor and quantify sediment transport dynamics.