TS1.5 | Faults, fractures, stress and the mechanics of the upper crust
Faults, fractures, stress and the mechanics of the upper crust
Convener: Nicolas Beaudoin | Co-conveners: Olivier Lacombe, Mai-Linh Doan, Alexis Cartwright-Taylor

Understanding the initiation and evolution of faults and fractureS is a prerequisite to understanding the mechanics of the upper crust, and by extension better apprehending fundamental and engineering usage of the subsurface. Fault and fracture mechanics is a vastly studied topic, yet unsolved questions remain about the processes of fault initiation and propagation, about the role of fluid pressure on both neoformation and reactivation of faults and fracture, or about the stress build-up, transmission and attenuation in the crust.
This session aims at drawing the current picture of the advances and challenges in this topic, embracing the fault geomechanics, the development and application of paleopiezometry techniques in the upper crust, new insights about the feedback between fluid pressure and deformation, and the understanding of diffuse fracture network with respect to the deformation history. We welcome contributions focusing on faults, fractures and/or (past and current) stress orientations and magnitudes in the crust, whether these contributions involve experimental approaches, numerical simulations, theoretical and conceptual modelling, and/or naturalistic case studies.

Understanding the initiation and evolution of faults and fractureS is a prerequisite to understanding the mechanics of the upper crust, and by extension better apprehending fundamental and engineering usage of the subsurface. Fault and fracture mechanics is a vastly studied topic, yet unsolved questions remain about the processes of fault initiation and propagation, about the role of fluid pressure on both neoformation and reactivation of faults and fracture, or about the stress build-up, transmission and attenuation in the crust.
This session aims at drawing the current picture of the advances and challenges in this topic, embracing the fault geomechanics, the development and application of paleopiezometry techniques in the upper crust, new insights about the feedback between fluid pressure and deformation, and the understanding of diffuse fracture network with respect to the deformation history. We welcome contributions focusing on faults, fractures and/or (past and current) stress orientations and magnitudes in the crust, whether these contributions involve experimental approaches, numerical simulations, theoretical and conceptual modelling, and/or naturalistic case studies.