ESSI4.10 | Remote sensing for monitoring the coastal zone: novel methods, uncertainty and impacts
EDI
Remote sensing for monitoring the coastal zone: novel methods, uncertainty and impacts
Co-organized by OS2
Convener: Xavier Monteys | Co-conveners: Ana Silio-Calzada, Paula Gomes da SilvaECSECS, Salvatore Savastano

The coastal zone is globally of great environmental and economic importance, but the stability and sustainability of this region faces many threats. Climate-induced sea level rise, coastal erosion and flooding due to increased storms, and pollution and disturbance of ecosystems are all stresses shaping the present coastline and near-shore environments. These direct impacts on the coast are driving coastline management and marine policies worldwide.



These initiatives rely on key, up-to-date, and repeatable environmental information layers, which are required to effectively monitor coastal change and make informed and coordinated decisions on the sustainable use of coastal and marine resources, in alignment with climate strategies and the protection of coastal areas.



To address this need, advanced methodologies based on remote sensing are becoming more widely used. These techniques have benefited from the surge of Earth Observation data, and advancements in computational and classification algorithms. In recent years, together with the upsurge of cloud computing, there has been a growing focus on new challenges such as sensor and data fusion from multiple sources, and its potential application to effectively monitoring the changes in coastal environments.



This session calls for papers that advance our capability or understanding of the application of Earth Observation remote sensing to coastal zone monitoring, with specific interest in contributions that (1) develop novel methodologies or data fusion workflows in coastal geomorphology, near-shore satellite-derived bathymetry, coastal altimetry, coastal dynamics, water quality and coastal ecosystems (2) include validation and uncertainty budgets, (3) incorporate temporal resolution for monitoring and prediction of coastal change, and (4) impact a wide range of applications.