HS2.4.4 | Influence of Land Use/Land Cover Transitions on Hydrological Processes and Water Resources Dynamics
EDI PICO
Influence of Land Use/Land Cover Transitions on Hydrological Processes and Water Resources Dynamics
Convener: Andrzej Wałęga | Co-conveners: Tomáš Lepeška, Agnieszka Rajwa-KuligiewiczECSECS

The relationship between land cover, land use, and water resources is complex and bidirectional. Changes in land cover and use can dramatically alter water circulation, availability, quantity and quality, while water resources significantly shape land cover patterns and ecosystem health. Land cover changes are determined by many environmental factors, including water circulation, landscape quality, and ecosystems. Climate variability and land cover changes have been shown to alter the quality and availability of freshwater resources around the world at multiple scales. Human activity is the main driving force influencing land cover changes. Globally, land cover change is a dominant factor affecting ecosystems and the hydrological regime. Land use and land cover changes (LUCC) directly affect the magnitude of evapotranspiration, surface runoff, groundwater recharge by infiltration, and even precipitation. Generally, evapotranspiration, surface water storage, and groundwater recharge are interrelated processes that regulate the balance in the water dynamics of the entire basin. From the point of view of water management, the simulation of land use changes is very important because it provides future scenarios and patterns for water resources.
The main objective of the session is to discuss the role of land use/land cover changes in different regions and diverse scales in accelerating hydrological processes and altering water resources. The main topics should include the following problems:
1. Transitions of LULC changes in different landscapes,
2. Impact of LULC changes on ecosystems and the risk of floods and droughts,
3. Indicators of water resources including LULC changes,
4. Modelling of hydrological processes including LULC changes,
5. Projections of water resource changes affected by LULC and climate change,
6. New data sources to detect LULC changes