PS5.1 | Exoplanets atmosphere studies: climates, clouds and magnetic coupling
Exoplanets atmosphere studies: climates, clouds and magnetic coupling
Convener: Christiane Helling | Co-conveners: Monika Lendl, J M Désert, Nicolas Iro

This session addresses recent progress in characterisation of exoplanet climate regimes based on observations including JWST, TESS, and CHEOPS. JWST for the first time observed features of solid particles which have been interpreted as signatures of mineral clouds in transition spectra of gas giant exoplanets while complementary facilities such as TESS and CHEOPS provide equally important insight into the physics of exoplanet atmospheres. TESS and CHEOPS phase curves point to the need of a magnetically coupled atmospheric gas. While all these processes have been predicted for exoplanets before they could be observed, planetary clouds and magnetic fields have been extensively studied for solar system planets in situ with diverse space missions.

This session aims to invite recent progress in exoplanet atmosphere characterisation based on a combination of observation and modelling. The session focusses on cloud and gas-phase chemistry modelling, the modelling of magnetic coupling in atmospheres and how these have and can be observed. Contributions working at the cross-over of solar system and exoplanet sciences are particularly welcomed.

This session is triggered by the recent CHEOPS atmosphere interpretation activities on incorporating complex 3D modelling in their data interpretation. This session is part of the PLATO WP/WG activities for exoplanet gas giants.

Organisational aspects:
We plan to assure a diverse program as well as a diversity of speakers according to the EGU EDI labels. The program shall foster exchange by leaving enough time for questions and answers. We further plan to involve young researchers into the session handling (following the EANA example).

This session addresses recent progress in characterisation of exoplanet climate regimes based on observations including JWST, TESS, and CHEOPS. JWST for the first time observed features of solid particles which have been interpreted as signatures of mineral clouds in transition spectra of gas giant exoplanets while complementary facilities such as TESS and CHEOPS provide equally important insight into the physics of exoplanet atmospheres. TESS and CHEOPS phase curves point to the need of a magnetically coupled atmospheric gas. While all these processes have been predicted for exoplanets before they could be observed, planetary clouds and magnetic fields have been extensively studied for solar system planets in situ with diverse space missions.

This session aims to invite recent progress in exoplanet atmosphere characterisation based on a combination of observation and modelling. The session focusses on cloud and gas-phase chemistry modelling, the modelling of magnetic coupling in atmospheres and how these have and can be observed. Contributions working at the cross-over of solar system and exoplanet sciences are particularly welcomed.

This session is triggered by the recent CHEOPS atmosphere interpretation activities on incorporating complex 3D modelling in their data interpretation. This session is part of the PLATO WP/WG activities for exoplanet gas giants.

Organisational aspects:
We plan to assure a diverse program as well as a diversity of speakers according to the EGU EDI labels. The program shall foster exchange by leaving enough time for questions and answers. We further plan to involve young researchers into the session handling (following the EANA example).