BG3.6 | Vegetation functional responses to global change across multiple methods and scales
EDI
Vegetation functional responses to global change across multiple methods and scales
Convener: Richard Nair | Co-conveners: Yunpeng Luo, Yitong Yao, Camille Abadie

The need to predict ecosystem responses to anthropogenic change, including but not limited to changes in climate and increased atmospheric CO2 concentrations, is more pressing than ever. Global change is inherently multi-factorial and as the terrestrial biosphere moves into states without a present climate analogue, mechanistic understanding of ecosystem processes and their linkages with vegetation diversity and ecosystem function is vital to enable predictive capacity in future forecast tools.

This session is about process understanding of scalable ecophysiology and ecosystem function relevant to carbon and water cycles, above- and below-ground. We facilitate dialogue across scales and techniques, from mesocosm experiments to field experiments, remote sensing and modelling.

The need to predict ecosystem responses to anthropogenic change, including but not limited to changes in climate and increased atmospheric CO2 concentrations, is more pressing than ever. Global change is inherently multi-factorial and as the terrestrial biosphere moves into states without a present climate analogue, mechanistic understanding of ecosystem processes and their linkages with vegetation diversity and ecosystem function is vital to enable predictive capacity in future forecast tools.

This session is about process understanding of scalable ecophysiology and ecosystem function relevant to carbon and water cycles, above- and below-ground. We facilitate dialogue across scales and techniques, from mesocosm experiments to field experiments, remote sensing and modelling.