BG3.1 | Present and future global vegetation dynamics and carbon stocks from observations and models
EDI
Present and future global vegetation dynamics and carbon stocks from observations and models
Convener: Ana Bastos | Co-conveners: Matthias Forkel, Lucia Sophie Layritz, Thomas Pugh, Martin Thurner

The terrestrial vegetation carbon balance is controlled not just by photosynthesis, but by respiration, carbon allocation, turnover (comprising litterfall, background mortality and disturbances) and wider vegetation dynamics. Recently observed changes in vegetation structure and functioning are the result of these processes and their interactions with atmospheric carbon dioxide concentration, nutrient availability, climate, and human activities. The quantification and assessment of such changes has proven extremely challenging because of a lack of observations at spatio-temporal scales appropriate for evaluating trends and projecting them into the future.

This limited observation base gives rise to high uncertainty regarding the future terrestrial carbon sink. Many questions need answer to determine if it will be sustained under future environmental changes, or whether increases in autotrophic respiration or carbon turnover might counteract this negative feedback to climate change. For instance, will accelerated background tree mortality or more frequent and more severe disturbance events (e.g. drought, fire, insect outbreaks) turn vegetation into carbon sources? How will shifts in dynamics of plant mortality, establishment, and growth influence forest composition?

Uncertainties and/or data gaps in large-scale empirical products of vegetation dynamics, carbon fluxes and stocks may be overcome by extensive collections of field data and new satellite retrievals of forest biomass and other vegetation properties. Such novel datasets may be used to evaluate, develop and parametrize global vegetation models and hence to constrain present and future simulations of vegetation dynamics. Where no observations exist, exploratory modelling can investigate realistic responses and identify necessary measurements. We welcome contributions that make use of observational approaches, vegetation models, or model-data integration techniques to advance understanding of the effects of environmental change on vegetation dynamics, tree mortality as well as carbon stocks and fluxes at local, regional or global scales and/or over long periods.

The terrestrial vegetation carbon balance is controlled not just by photosynthesis, but by respiration, carbon allocation, turnover (comprising litterfall, background mortality and disturbances) and wider vegetation dynamics. Recently observed changes in vegetation structure and functioning are the result of these processes and their interactions with atmospheric carbon dioxide concentration, nutrient availability, climate, and human activities. The quantification and assessment of such changes has proven extremely challenging because of a lack of observations at spatio-temporal scales appropriate for evaluating trends and projecting them into the future.

This limited observation base gives rise to high uncertainty regarding the future terrestrial carbon sink. Many questions need answer to determine if it will be sustained under future environmental changes, or whether increases in autotrophic respiration or carbon turnover might counteract this negative feedback to climate change. For instance, will accelerated background tree mortality or more frequent and more severe disturbance events (e.g. drought, fire, insect outbreaks) turn vegetation into carbon sources? How will shifts in dynamics of plant mortality, establishment, and growth influence forest composition?

Uncertainties and/or data gaps in large-scale empirical products of vegetation dynamics, carbon fluxes and stocks may be overcome by extensive collections of field data and new satellite retrievals of forest biomass and other vegetation properties. Such novel datasets may be used to evaluate, develop and parametrize global vegetation models and hence to constrain present and future simulations of vegetation dynamics. Where no observations exist, exploratory modelling can investigate realistic responses and identify necessary measurements. We welcome contributions that make use of observational approaches, vegetation models, or model-data integration techniques to advance understanding of the effects of environmental change on vegetation dynamics, tree mortality as well as carbon stocks and fluxes at local, regional or global scales and/or over long periods.