BG1.7 | Global phosphorus cycling: a transdisciplinary challenge for sustainability
EDI
Global phosphorus cycling: a transdisciplinary challenge for sustainability
Co-organized by OS3/SSS5
Convener: Nelly Sophie RaymondECSECS | Co-conveners: Julian HelfensteinECSECS, Sonya Dyhrman, David O'Connell, Tom Jilbert

Phosphorus (P) is an essential element for life on Earth and is tightly cycled within the biosphere. Throughout geological history, P availability has regulated biological productivity with impacts on the global carbon cycle. Today, human activities are significantly changing the natural cycling of P. Phosphate mining threatens P reserves, while increased inputs of P to terrestrial ecosystems have enhanced fluxes of P to lakes and the oceans.

Direct anthropogenic perturbations of the P cycle, coupled with other human-induced stresses, have impacted numerous environments. Forest ecosystems may be losing their ability to recycle P efficiently, due to excessive N input, extensive biomass removal, and climatic stress. Soils, which serve as the biogeochemical fulcrum of the terrestrial P cycle, have been greatly altered by fertilizer use in recent decades. Changes in the P cycle on land impact the magnitude and timing of P fluxes into aquatic ecosystems, influencing their trophic state. Burial in sediments returns P to the geological reservoir, eventually forming economically viable P deposits. Throughout the P cycle, redox conditions play a key role in transformations and mobility of P. Climate change and its mitigation affect and will further disrupt global P cycles. For example, the removal of CO2 from the atmosphere through an increase in global soil organic carbon stocks implies P sequestration.

This interdisciplinary session invites contributions to the study of P from all disciplines, and aims to foster collaborations links between researchers working on different aspects of the P cycle. We target a balanced session giving equal weight across the continuum of environments in the P cycle, from agriculture, forests, soils and groundwater, through lakes, rivers and estuaries, to oceans, marine sediments and geological P deposits. We welcome both empirical and modeling studies.