Dissolved and particulate organic carbon (DOM, POM) are key components of the global carbon cycle and are important as potential sources of CO2 and CH4, and for the long-term preservation of carbon stabilized in subsoils and sediments. DOM and POM are important sources of energy for microbial metabolism within terrestrial ecosystems, the aquatic continuum, and, ultimately, the ocean. Despite recent evidence showing this lateral transport of carbon is linked to anthropogenic perturbations, efforts to integrate DOM and POM fluxes across the terrestrial-aquatic continuum are just emerging. A comprehensive understanding of the dynamics of DOM and POM, and their interactions, in terrestrial and aquatic ecosystems remains challenging due to complex interactions of biogeochemical and hydrological processes at different scales, i.e. from the molecular to the landscape scale.
This session aims to improve our understanding of organic matter processing at the interface of terrestrial and aquatic ecosystems. We solicit contributions dealing with amounts, composition, reactivity, and fate of DOM and POM and the stoichiometry of its constituents (i.e., C, N, P, S) in soils, lakes, rivers, and the ocean as well as the impact of land use change and climatic change on these processes. For example, when assessing carbon dynamics across the terrestrial-aquatic continuum, it is important to recognize the key role of peatlands and peat restoration efforts as sources of organic matter for streams and rivers, as well as the contribution of mineral soil horizons to C fluxes at the catchment scale. Contributions addressing lateral fluxes of sediment and carbon induced by soil erosion or permafrost thaw are also welcome. We aim to bring together scientists from various backgrounds, but all devoted to the study of dissolved and/or particulate organic matter using a broad spectrum of methodological approaches (e.g. molecular, spectroscopic, isotopic, 14C, other tracers, and modeling).
Dissolved and particulate organic matter – Linking terrestrial and aquatic ecosystems
Co-organized by HS13/SSS5