The complexity of hydrological and Earth systems poses significant challenges to their prediction and understanding capabilities. The advent of machine learning (ML) provides powerful tools for modeling these complex systems. However, realizing their full potential in this field is not just about algorithms and data, but requires a cooperative interaction between domain knowledge and data-driven power. This session aims to explore the frontier of this convergence and how it facilitates a deeper process understanding of various aspects of hydrological processes and their interactions with the atmosphere and biosphere across spatial and temporal scales.
We invite researchers working in the fields of explainable AI, physics-informed ML, hybrid Earth system modeling (ESM), and AI for causal and equation discovery in hydrology and Earth system sciences to share their methodologies, findings, and insights. Submissions are welcome on topics including, but not limited to:
- Explainability and transparency in ML/AI modeling of hydrological and Earth systems;
- Process and knowledge integration in ML/AI models;
- Data assimilation and hybrid ESM approaches;
- Causal learning and inference in ML models;
- Data-driven equation discovery in hydrological and Earth systems;
- Data-driven process understanding in hydrological and Earth systems;
- Challenges, limitations, and solutions related to hybrid models and XAI.
Explainable and hybrid machine learning in hydrology and Earth system sciences
Co-organized by ESSI1/NP1
Convener:
Shijie JiangECSECS
|
Co-conveners:
Ralf LoritzECSECS,
Lu LiECSECS,
Basil KraftECSECS,
Dapeng FengECSECS