SSS4.10 | Microbial growth, death, and turnover: experiments and models to decode soil complexity
EDI
Microbial growth, death, and turnover: experiments and models to decode soil complexity
Co-organized by BG6
Convener: Kyle Mason-JonesECSECS | Co-conveners: Sergey Blagodatsky, Katerina Georgiou

Soil microorganisms are the principal actors in key soil functions, including nutrient cycling, carbon transformation, and clean water provision. Their growth and anabolism rely on C and energy as well as various nutrients (e.g., N and P) in appropriate stoichiometric relationships. Various sources of organic matter fulfill these needs, which are transformed into new cellular growth, microbial storage compounds, microbial products or greenhouse gases such as CO2. Microbial death processes close the loop to return biomass to non-living soil organic matter as necromass, with altered properties. Theoretical and experimental approaches are providing new insights into this coupled, dynamic system and the diverse communities that drive it. This session integrates experimental and modelling insights to elucidate the energy and matter flows driven by soil microbial metabolism, their dependency on environmental conditions, and the implications for soil functioning.

We welcome submissions seeking to understand how, when and where soil microorganisms transform organic matter through their metabolism, growth and death. Topics of interest include characterization of microbial activity and turnover using advanced methods (e.g., isotope tracing, calorimetry, metagenomics), microbial ecophysiology and stoichiometry, carbon and energy-use efficiency, alongside approaches to understand microbial functional responses (e.g. dynamic modelling, artificial intelligence). We aim to stimulate interdisciplinary discussions to advance our understanding of soil biology at scales from the mechanistic understanding of biogeochemical processes to global change.

We are excited to have Stefano Manzoni (Stockholm University) as an invited speaker for the session.

Soil microorganisms are the principal actors in key soil functions, including nutrient cycling, carbon transformation, and clean water provision. Their growth and anabolism rely on C and energy as well as various nutrients (e.g., N and P) in appropriate stoichiometric relationships. Various sources of organic matter fulfill these needs, which are transformed into new cellular growth, microbial storage compounds, microbial products or greenhouse gases such as CO2. Microbial death processes close the loop to return biomass to non-living soil organic matter as necromass, with altered properties. Theoretical and experimental approaches are providing new insights into this coupled, dynamic system and the diverse communities that drive it. This session integrates experimental and modelling insights to elucidate the energy and matter flows driven by soil microbial metabolism, their dependency on environmental conditions, and the implications for soil functioning.

We welcome submissions seeking to understand how, when and where soil microorganisms transform organic matter through their metabolism, growth and death. Topics of interest include characterization of microbial activity and turnover using advanced methods (e.g., isotope tracing, calorimetry, metagenomics), microbial ecophysiology and stoichiometry, carbon and energy-use efficiency, alongside approaches to understand microbial functional responses (e.g. dynamic modelling, artificial intelligence). We aim to stimulate interdisciplinary discussions to advance our understanding of soil biology at scales from the mechanistic understanding of biogeochemical processes to global change.

We are excited to have Stefano Manzoni (Stockholm University) as an invited speaker for the session.