SSS5.12 | Biogeochemical processes controlling carbon, nitrogen, phosphorus and sulfur cycling in the soil-plant system
EDI
Biogeochemical processes controlling carbon, nitrogen, phosphorus and sulfur cycling in the soil-plant system
Convener: Anna GuninaECSECS | Co-conveners: Manfred Sager, Tonu Tonutare, Viia Lepane, Beatrice Giannetta

Regulation of the cycles of carbon (C) and nutrients (N, P, S) in soils and ensuring their linkage and retention are recognized as major challenges, especially under shifts in environmental factors (warming, drought, N deposition, overfertilization, salinization, alterations of landscapes, biodiversity loss, invasion of species and intensification of land use). The processes underlying C and nutrient cycling in soils are difficult to evaluate and separate since multiple factors can shift process rates and directions and determine pool sizes. Factors also frequently have an interactive effect. Estimating the magnitude of C and nutrient pool response and the temporal scale of reactions to land use change or shifts of environmental factors remains a significant challenge. Thus, this session invites contributions focused on evaluating the soil C, N, P, and S pools and process responses under global change scenarios at the local and large scales. Studies that combine short-term laboratory observation focused on process rate estimation with long-term field experiments and evaluation of pools are highly welcome. Studies that focus on the effect of soil chemistry, including an application of isotopes to investigate the process rates, mineralogy, and the transition from conventional to organic agriculture/land restoration, are also highly relevant.

Regulation of the cycles of carbon (C) and nutrients (N, P, S) in soils and ensuring their linkage and retention are recognized as major challenges, especially under shifts in environmental factors (warming, drought, N deposition, overfertilization, salinization, alterations of landscapes, biodiversity loss, invasion of species and intensification of land use). The processes underlying C and nutrient cycling in soils are difficult to evaluate and separate since multiple factors can shift process rates and directions and determine pool sizes. Factors also frequently have an interactive effect. Estimating the magnitude of C and nutrient pool response and the temporal scale of reactions to land use change or shifts of environmental factors remains a significant challenge. Thus, this session invites contributions focused on evaluating the soil C, N, P, and S pools and process responses under global change scenarios at the local and large scales. Studies that combine short-term laboratory observation focused on process rate estimation with long-term field experiments and evaluation of pools are highly welcome. Studies that focus on the effect of soil chemistry, including an application of isotopes to investigate the process rates, mineralogy, and the transition from conventional to organic agriculture/land restoration, are also highly relevant.