GD1.2 | Predictive Geodynamics: Leveraging high-fidelity observations and models to uncover fundamental Earth's processes
EDI
Predictive Geodynamics: Leveraging high-fidelity observations and models to uncover fundamental Earth's processes
Convener: Ingo L. StotzECSECS | Co-conveners: Berta Vilacís, Hans-Peter Bunge, Sascha Brune, Aisling Dunn

A variety of observational techniques are now mature enough to provide valuable insights into the dynamics of the asthenosphere and deeper mantle and its interaction with surface processes. They are derived from seismology, geomorphology, stratigraphy, geodesy, geochemistry, petrology, tectonics and other fields. These observations offer powerful constraints on mantle convection patterns and the dynamics and evolution of the deep Earth system, especially when pursued in combination with theoretical and numerical models of geodynamic processes. The asthenosphere plays a key role in facilitating the interaction of mantle and lithosphere dynamics, controlling processes like postglacial rebound, dynamic topography, as well as plate-driving and resisting forces. Current challenges include the need to reconcile different spatial resolutions between models and observations, uneven data coverage and the determination of appropriate sampling and simulation scales.

This session will provide a holistic view of the surface expression of mantle convection from geodetic to geological time scales using multi-disciplinary methods, including (but not limited to) geodetic, geophysical, geochemical, geomorphological, stratigraphic, and other observations, the seismic imaging of the mantle convective processes, as well as numerical modeling. Thus, it will provide rich opportunities for presenters and attendees from a range of disciplines, demographics, and stages of their scientific career to engage in this exciting and multidisciplinary problem in Earth science.

A variety of observational techniques are now mature enough to provide valuable insights into the dynamics of the asthenosphere and deeper mantle and its interaction with surface processes. They are derived from seismology, geomorphology, stratigraphy, geodesy, geochemistry, petrology, tectonics and other fields. These observations offer powerful constraints on mantle convection patterns and the dynamics and evolution of the deep Earth system, especially when pursued in combination with theoretical and numerical models of geodynamic processes. The asthenosphere plays a key role in facilitating the interaction of mantle and lithosphere dynamics, controlling processes like postglacial rebound, dynamic topography, as well as plate-driving and resisting forces. Current challenges include the need to reconcile different spatial resolutions between models and observations, uneven data coverage and the determination of appropriate sampling and simulation scales.

This session will provide a holistic view of the surface expression of mantle convection from geodetic to geological time scales using multi-disciplinary methods, including (but not limited to) geodetic, geophysical, geochemical, geomorphological, stratigraphic, and other observations, the seismic imaging of the mantle convective processes, as well as numerical modeling. Thus, it will provide rich opportunities for presenters and attendees from a range of disciplines, demographics, and stages of their scientific career to engage in this exciting and multidisciplinary problem in Earth science.