AS1.30 | Atmospheric rivers: Understanding their processes and impacts across past, present, and future climates
EDI PICO
Atmospheric rivers: Understanding their processes and impacts across past, present, and future climates
Co-organized by CL4
Convener: Sara M. Vallejo-BernalECSECS | Co-conveners: Ferran Lopez-Marti, Tobias BraunECSECS, Irina V. Gorodetskaya

Atmospheric rivers (ARs) are narrow and transient filaments of intense water vapor transport in the lower troposphere. They account for 90% of poleward moisture transport and drive high-impact weather extremes all around the globe. Future projections suggest that landfalling ARs will become even more hazardous as they further intensify in a warmer climate. Given the fundamental role of ARs in the global water cycle, relevant research is rapidly expanding across different disciplines. With new data sources and novel methodological approaches, the multidisciplinary AR community has been breaking ground and posing fundamental questions for the understanding of AR processes and impacts.

By bringing together experts from diverse disciplines, this session aims to provide a comprehensive platform for discussing the latest advances in AR science. We invite all contributions that aim at a better understanding of AR uncertainties, processes, and impacts across past, present, and future climates. Relevant topics of the session include, but are not limited to:

• Observation, identification, and monitoring of ARs
• Physical, dynamical, & microphysical aspects of ARs
• Aerosol & biochemical aspects of ARs
• Environmental and socioeconomic impacts of AR-induced weather extremes
• ARs as a component of compound events
• AR dynamics and impacts in understudied regions
• Role of ARs in the changing Cryosphere
• Forecasting of ARs
• ARs in past, present, and future climates

Atmospheric rivers (ARs) are narrow and transient filaments of intense water vapor transport in the lower troposphere. They account for 90% of poleward moisture transport and drive high-impact weather extremes all around the globe. Future projections suggest that landfalling ARs will become even more hazardous as they further intensify in a warmer climate. Given the fundamental role of ARs in the global water cycle, relevant research is rapidly expanding across different disciplines. With new data sources and novel methodological approaches, the multidisciplinary AR community has been breaking ground and posing fundamental questions for the understanding of AR processes and impacts.

By bringing together experts from diverse disciplines, this session aims to provide a comprehensive platform for discussing the latest advances in AR science. We invite all contributions that aim at a better understanding of AR uncertainties, processes, and impacts across past, present, and future climates. Relevant topics of the session include, but are not limited to:

• Observation, identification, and monitoring of ARs
• Physical, dynamical, & microphysical aspects of ARs
• Aerosol & biochemical aspects of ARs
• Environmental and socioeconomic impacts of AR-induced weather extremes
• ARs as a component of compound events
• AR dynamics and impacts in understudied regions
• Role of ARs in the changing Cryosphere
• Forecasting of ARs
• ARs in past, present, and future climates