AS3.24 | Remote Sensing of Carbon Dioxide and Methane from Space
Remote Sensing of Carbon Dioxide and Methane from Space
Convener: Matthaeus Kiel | Co-conveners: Maximilian Reuter, Dietrich G. Feist, Neil Humpage, Sander Houweling

Significant uncertainties remain in our understanding of Carbon Dioxide (CO2) and Methane (CH4) fluxes across land, ocean, and atmosphere on both regional and global scales. Remotely sensed CO2 and CH4 observations hold great potential for enhancing our understanding of the natural carbon cycle and monitoring anthropogenic emissions. Recent advances in remote sensing technologies for CO2 and CH4, spanning space, aircraft, and ground-based platforms, have delivered unprecedented accuracy and coverage. Moreover, upcoming next-generation platforms like CO2M, MicroCarb, GOSAT-GW, and MethaneSAT promise to further enhance observational capabilities. When integrated with ground-based observation networks and modeling tools, these space-based observations can significantly improve our understanding of the carbon cycle at both local and global scales.

This session invites contributions on all aspects of remote sensing of CO2 and CH4, covering current missions (e.g., GOSAT/2, OCO-2/3, S5P, EMIT, Carbon Mapper, GHGSat, EMIT), upcoming and planned missions (e.g., CO2M, MicroCarb, Merlin, GOSAT-GW, MethaneSAT), as well as ground-based (e.g., TCCON, COCCON), aircraft, and other remote sensing instruments. We welcome advances in retrieval techniques, instrumental concepts, and validation activities, with a particular emphasis on interpreting observations related to natural fluxes or anthropogenic emissions.