EPSC Abstracts
Vol. 18, EPSC-DPS2025-2044, 2025, updated on 09 Jul 2025
https://doi.org/10.5194/epsc-dps2025-2044
EPSC-DPS Joint Meeting 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
The local effect of surface liquid methane and topography on Titan’s weather
Audrey Chatain1, Léa E Bonnefoy2, Enora Moisan2,1, Scot Rafkin3, Alejadro Soto3, Juan Lora4, Aymeric Spiga2, Maxence Lefèvre1, and Ricardo Hueso5
Audrey Chatain et al.
  • 1Laboratoire Atmosphères Observations Spatiales/Institut Pierre-Simon Laplace (LATMOS/IPSL), Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Sorbonne Université, 11 bo
  • 2Laboratoire de Météorologie Dynamique/Institut Pierre-Simon Laplace (LMD/IPSL), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 4 place Jussieu, Tour 45-55 3e étage, 75252 Paris, France
  • 3Department of Space Studies, Southwest Research Institute (SwRI), 1050 Walnut Street, Suite 300, Boulder, CO 80302, USA
  • 4Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
  • 5Departamento de Física Aplicada, Escuela de Ingeniería de Bilbao, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain

Titan hosts quite Earth-like weather patterns. This is mainly due to the fact that its surface pressure is very close to the Earth’ (1.5 bar) and that methane is abundant and with atmospheric conditions near its triple point. It can therefore be a gas, a liquid or a solid with small variations in the temperature or pressure. We then observe similar landscapes and weather processes as on Earth: clouds, rain, rivers, lakes, seas (Hayes, 2016, Ann Rev EPS; Turtle et al., 2018, GRL)…

The Cassini-Huygens mission gave us insights on the surface conditions and topography on Titan. The future Dragonfly mission will allow an in-depth analysis of an equatorial location just after the Northern winter solstice with many meteorological sensors (Barnes et al., 2021, PSJ).

In the meantime, and to help prepare future Dragonfly operations, we can run climate models in Titan’s conditions to investigate typical weather patterns in the atmosphere. Here we focus on surface-atmosphere local interactions with an idealized mesoscale model (with a horizontal resolution of 1-4 km) based on the WRF (Weather Research and Forecasting) model developed by NCAR for Earth weather predictions. We call it mtWRF (“mesoscale Titan WRF”). This model can in particular simulate a methane lake (Rafkin & Soto, 2020, Icarus), in 3D (Chatain et al., 2024, Icarus), with topography (Moisan et al., PSJ, in review) and includes the diurnal influence of radiations (Chatain et al., 2022, PSJ). We use input atmospheric profiles from the global scale Titan Atmospheric Model (Lora et al., 2022, Icarus) at various locations and seasons. We investigate the influence of topography with idealized maps as well as synthetic topography maps based on radar data at specific locations on Titan (Bonnefoy et al., EPSC 2024).

Results show that lakes cool down by evaporating methane into the atmosphere. This induces a local cooling of the atmosphere and strong winds at the shores. We observe strong diurnal, latitudinal and seasonal variations, showing that solar heating plays a major role.

These results will help us understand the general absence of waves in lake observations, the possibility of fog in depressions, the evaporation rate of ponds after heavy rains and the intensity of winds created by local slopes.

 

References:

Barnes, J. W., Turtle, E. P., Trainer, M. G., Lorenz, R. D., MacKenzie, S. M., Brinckerhoff, W. B., Cable, M. L., Ernst, C. M., Freissinet, C., Hand, K. P., Hayes, A. G., Hörst, S. M., Johnson, J. R., Karkoschka, E., Lawrence, D. J., Gall, A. Le, Lora, J. M., McKay, C. P., Miller, R. S., … Stähler, S. C. (2021). Science goals and objectives for the Dragonfly Titan rotorcraft relocatable lander. Planetary Science Journal, 2(4), 130. https://doi.org/10.3847/PSJ/abfdcf

Bonnefoy, L. E., Lefèvre, M., Chatain, A., Spiga, A., Hayes, A. G., Rodriguez, S., & Lucas, A. (2024). Synthetic topography, roughness, albedo, and thermal inertia maps for mesoscale modeling on Titan. Europlanet Science Congress 2024, 907. https://doi.org/10.5194/epsc2024-907

Chatain, A., Rafkin, S. C. R., Soto, A., Hueso, R., & Spiga, A. (2022). Air – Sea Interactions on Titan: Effect of Radiative Transfer on the Lake Evaporation and Atmospheric Circulation. The Planetary Science Journal, 3(10), 232. https://doi.org/10.3847/PSJ/ac8d0b

Chatain, A., Rafkin, S. C. R., Soto, A., Moisan, E., Lora, J. M., Le Gall, A., Hueso, R., & Spiga, A. (2024). The impact of lake shape and size on lake breezes and air-lake exchanges on Titan. Icarus, 411(December 2023), 115925. https://doi.org/10.1016/j.icarus.2023.115925

Hayes, A. G. (2016). The Lakes and Seas of Titan. Annual Review of Earth and Planetary Sciences, 44(1), 57–83. https://doi.org/10.1146/annurev-earth-060115-012247

Lora, J. M., Battalio, J. M., Yap, M., & Baciocco, C. (2022). Topographic and orbital forcing of Titan’s hydroclimate. Icarus, 384(May), 115095. https://doi.org/10.1016/j.icarus.2022.115095

Moisan, E., Chatain, A., Rafkin, S. C. R., Soto, A., Mackenzie, S. M., & Spiga, A. (n.d.). Ramparts around lakes on Titan impact winds and methane evaporation. In Revision for the Planetary Science Journal.

Rafkin, S. C. R., & Soto, A. (2020). Air-sea interactions on Titan: Lake evaporation, atmospheric circulation, and cloud formation. Icarus, 351, 113903. https://doi.org/10.1016/j.icarus.2020.113903

Turtle, E. P., Perry, J. E., Barbara, J. M., Del Genio, A. D., Rodriguez, S., Le Mouélic, S., Sotin, C., Lora, J. M., Faulk, S., Corlies, P., Kelland, J., MacKenzie, S. M., West, R. A., McEwen, A. S., Lunine, J. I., Pitesky, J., Ray, T. L., & Roy, M. (2018). Titan’s Meteorology Over the Cassini Mission: Evidence for Extensive Subsurface Methane Reservoirs. Geophysical Research Letters, 45(11), 5320–5328. https://doi.org/10.1029/2018GL078170

 

How to cite: Chatain, A., Bonnefoy, L. E., Moisan, E., Rafkin, S., Soto, A., Lora, J., Spiga, A., Lefèvre, M., and Hueso, R.: The local effect of surface liquid methane and topography on Titan’s weather, EPSC-DPS Joint Meeting 2025, Helsinki, Finland, 7–12 Sep 2025, EPSC-DPS2025-2044, https://doi.org/10.5194/epsc-dps2025-2044, 2025.