Europlanet Science Congress 2020
Virtual meeting
21 September – 9 October 2020
Europlanet Science Congress 2020
Virtual meeting
21 September – 9 October 2020

Session programme

ODAA

ODAA – Outreach, Diversity, Amateur Astronomy

Programme group coordinators: Harri Haukka, Arianna Piccialli, Jose Antonio Gordillo Martorell

ODAA1

The benefits of diversity and inclusiveness in the scientific community are incontrovertible. This session aims to foster debate within the planetary sciences community about the reasons behind under-representation of different groups (gender, cultural, ethnic origin and national) and best practices to make the research environment more inclusive identifying and addressing barriers to equality.

We invite abstracts focusing on: under-representation (gender, cultural, ethnic origin and nationality biases) supported by statistics and data; outreach and education activities to reach broad and diverse audiences, best practices to support inclusiveness; and case studies on mentoring and bias-concerned activities.

Convener: Arianna Piccialli | Co-conveners: Lena Noack, Edgard Rivera-Valentin
ODAA2

Knowledge creation is a collaborative process including synergies between different disciplines, communities and stakeholders. The framework of open science is also connected to the involvement of people outside academia, such as amateur societies, school students, corporate partners etc. Open science has a variety of aspects and applications. What are the efforts done in the field of planetary sciences to establish and increase openness? To what degree planetary science researchers and practitioners endeavour accessibility within the various communities - academics and non-academics? During this session these and other relevant questions will be addressed through the presentation of open planetary science projects, tools, data and platforms. Furthermore, the current status and the potential for future efforts towards an open and public planetary science scheme will be discussed.
Planetary scientists, researchers and other stakeholders are welcome to present any relevant ideas and current efforts in the context of promoting open & public science.

Public information:
11:20–11:24 Introduction
11:24–11:28 Opening Science for educational purposes
11:28–11:32 Towards knowledge co-creation - Opening Scientific Research to the public
11:32–11:36 Practices and tools to support Open Science
11:36–11:40 Building an Open Scientific Community

Convener: Anastasia Kokori | Co-conveners: Caterina Boccato, Angelos Tsiaras
ODAA3

Amateur astronomy has evolved dramatically over recent years. A motivated amateur, with his/her backyard instrument and available software is nowadays capable of getting high-resolution planetary images in different wavelengths (better than many professional observatories could achieve 15 years ago). Topics well covered by amateur astronomers include: high-resolution imaging of solar system planets, high-precision photometry of stellar occultations by minor objects and giant planets' atmospheres, satellites' mutual phenomena and high-precision photometry of exoplanet transits. Additionally amateurs use dedicated all-sky cameras or radio-antennae to provide continuous meteor-detection coverage of the sky near their location and they start to contribute to spectroscopic studies of solar system objects.

Hundreds of regular observers are sharing their work providing very valuable data to professional astronomers. This is very valuable at a time when professional astronomers face increasing competition accessing observational resources. Additionally, networks of amateur observers can react at very short notice when triggered by a new event occurring on a solar system object requiring observations, or can contribute to a global observation campaign along with professional telescopes.

Moreover, some experienced amateur astronomers use advanced methods for analysing their data meeting the requirements of professional researchers, thereby facilitating regular and close collaboration with professionals. Often this leads to publication of results in peer-reviewed scientific journals. Examples include planetary meteorology of Jupiter, Saturn, Neptune or Venus; meteoroid or bolide impacts on Jupiter; asteroid studies, cometary or exoplanet research.

Additionally, since July 2016, the NASA spacecraft Juno explores Jupiter's inner structure from a series of long elliptical orbits with close flybys of the planet. To understand the atmospheric dynamics of the planet at the time of Juno, NASA collaborates with amateur astronomers observing the Giant Planet. The collaborative effort between Juno and amateurs is linked to the visual camera onboard Juno: JunoCam. Juno showcases an exciting opportunity for amateurs to provide an unique dataset that is used to plan the high-resolution observations from JunoCam and that advances our knowledge of the atmospheric dynamics of the Giant planet Jupiter. Contribution of amateurs range from their own images to Junocam images processing and support on selecting by vote the feature to be observed during the flybys.

This session will showcase results from amateur astronomers, working either by themselves or in collaboration with members of the professional community. In addition, members from both communities will be invited to share their experiences of pro-am partnerships and offer suggestions on how these should evolve in the future.
Oral and poster presentations are welcome.

Public information:
Amateur astronomy has evolved dramatically over recent years. A motivated amateur, with his/her backyard instrument and available software is nowadays capable of getting high-resolution planetary images in different wavelengths (better than many professional observatories could achieve 15 years ago). Topics well covered by amateur astronomers include: high-resolution imaging of solar system planets, high-precision photometry of stellar occultations by minor objects and giant planets' atmospheres, satellites' mutual phenomena and high-precision photometry of exoplanet transits. Additionally amateurs use dedicated all-sky cameras or radio-antennae to provide continuous meteor-detection coverage of the sky near their location and they start to contribute to spectroscopic studies of solar system objects.

Hundreds of regular observers are sharing their work providing very valuable data to professional astronomers. This is very valuable at a time when professional astronomers face increasing competition accessing observational resources. Additionally, networks of amateur observers can react at very short notice when triggered by a new event occurring on a solar system object requiring observations, or can contribute to a global observation campaign along with professional telescopes.

Moreover, some experienced amateur astronomers use advanced methods for analysing their data meeting the requirements of professional researchers, thereby facilitating regular and close collaboration with professionals. Often this leads to publication of results in peer-reviewed scientific journals. Examples include planetary meteorology of Jupiter, Saturn, Neptune or Venus; meteoroid or bolide impacts on Jupiter; asteroid studies, cometary or exoplanet research.

Additionally, since July 2016, the NASA spacecraft Juno explores Jupiter's inner structure from a series of long elliptical orbits with close flybys of the planet. To understand the atmospheric dynamics of the planet at the time of Juno, NASA collaborates with amateur astronomers observing the Giant Planet. The collaborative effort between Juno and amateurs is linked to the visual camera onboard Juno: JunoCam. Juno showcases an exciting opportunity for amateurs to provide an unique dataset that is used to plan the high-resolution observations from JunoCam and that advances our knowledge of the atmospheric dynamics of the Giant planet Jupiter. Contribution of amateurs range from their own images to Junocam images processing and support on selecting by vote the feature to be observed during the flybys.

This session will showcase results from amateur astronomers, working either by themselves or in collaboration with members of the professional community. In addition, members from both communities will be invited to share their experiences of pro-am partnerships and offer suggestions on how these should evolve in the future.

Convener: Marc Delcroix | Co-conveners: Ricardo Hueso, Anastasia Kokori, John Rogers
ODAA4

New communication and learning technologies as VR, Expanded Reality or languages as videogames are revolutioning the way we communicate science and can have a deep effect in the communication of planetary science, a field particularly friendly where to develop this kind of projects. We also address in this session the use of Planetary Science as a local development tool to reinforce the social dimenssion of the discipline and change its social perception. In particular we welcome communications related with experiences in communication of planetary science in social deprived realities and contexts including connection with the 17 Sustainable Development Goals (SDGs) to transform our world. We also include in this broad session our traditional exhibit for artists and scientists whose works are related to planetary science, including but not limited to data art, infographics, sculptures, paintings, digital art, static, moving and interactive, visual, sonic, textual and tactile works.

Convener: Jose Antonio Gordillo Martorell | Co-conveners: Adrienn Dorsánszki, Henrik Hargitai