Union-wide
Inter- and Transdisciplinary Sessions
Disciplinary sessions AS–GM
Disciplinary sessions GMPV–TS

Session programme

CR4

CR – Cryospheric Sciences

Programme group chairs: Olaf Eisen, Carleen Tijm-Reijmer

CR4 – Frozen ground, debris-covered glaciers and geomorphology

CR4.1

Glacial landscapes are constantly transforming in response to past and present climate and environmental conditions, e.g. available debris. Especially due to past and present global warming, rapid changes in these landscapes are observed. These changes are associated with transitions from different processual states : glacial – periglacial – paraglacial, and associated morphologies and landforms, including debris- covered glaciers and rock glaciers which are less understood. To unravel and quantify these past and present evolutions, controls and feedbacks, a broad spectrum of methods are available, including geomorphological mapping, dating, remote sensing, geophysics, numerical modelling, climate reconstruction, field observations and more. This session welcomes contributions related to all these methods, concepts and approaches used to investigate glacial-periglacial-paraglacial landscape evolution, controls and feedbacks. We seek abstracts on topics such as:
• conceptual frameworks of the evolution of glaciated landscapes;
• processual studies of glacial, paraglacial and periglacial landscapes across all temporal and spatial scales;
• transitions of glacial to periglacial or paraglacial landforms, and the role of debris cover within these glacier land systems
• geomorphometry of past and presently glaciated landscapes, debris-covered glaciers and rock glaciers.
• Interaction between debris-covered glaciers and the wider land system, for example, in terms of geohazards, erosion, sediment transport, and deposition.

Public information:
CR 4.1 Evolution of glacial-periglacial-paraglacial landscapes and debris-covered glaciers
Co-organized by GM7
Convener: Johannes BuckelECS | Co-conveners: Adina Racoviteanu, Evan MilesECS, Lindsey Nicholson, Tobias Bolch, Anne VoigtländerECS, Jasper Knight, Darren Jones

General structure:
- Please note that the order and number of presentations has been changed as some authors could not attend under the circumstances. At first all authors will present the abstracts with displays, afterwards the abstract without displays will be discussed. Please check the adjusted display schedule in the session description or in the uploaded session material.
- We will try to stick to the schedule and make sure the session doesn’t end in some chaos!
- Convener will introduce the presenter by display #. Presenter who should then briefly introduce their display in a couple of sentences or bullet points. Thereafter, the stage is open for discussion. When the time is up we will move to the next presenter. Please consider using the comment function at the display pages for further discussion until the end of May.

First part of our session (Wednesday, 6 May 2020, 08:30–10:15 CEST)
Chairpersons: Johannes Buckel, Anne Voigtländer

We have 10 displays and 8 abstracts to discuss, respectively. The display will be presented first because a fixed attendance is confirmed by the authors.
We have 6 min per display including chat discussion

RUNNING ORDER OF DISPLAYS

RUNNING ORDER OF DISPLAYS (6 Min per display)
08:30 – 08:34
Sign in and introduction to the session

08:35 – 08:41 solicited display
D2497 | EGU2020-19935
Geomorphic feedbacks on the moraine record
Leif Anderson and Dirk Scherler

08:41 – 08:47
D2498 | EGU2020-18360
Post-glacial dynamics of alpine Little Ice Age glacitectonized frozen landforms (Swiss Alps)
Julie Wee, Reynald Delaloye, and Chloé Barboux


08:47 – 08:53
D2499 | EGU2020-9509
Paraglacial adjustment of sediment-mantled slopes through landslide processes in the vicinity of the Austre Lovénbreen glacier (Ny-Ålesund, Svalbard)
Erik Kuschel, Christian Zangerl, Alexander Prokop, Eric Bernard, Florian Tolle, and Jean-Michel Friedt

08:53 – 08:59
D2502 | EGU2020-9201
Use of Convolution Neural Networks and Object Based Image Analysis for Automated Rock Glacier Mapping
Benjamin Aubrey Robson, Tobias Bolch, Shelley MacDonell, Daniel Hölbling, Philip Rastner, and Nicole Schaffer

08:59 – 09:05
D2507 | EGU2020-976
Structure and englacial debris content of a Himalayan debris-covered glacier revealed by an optical televiewer
Katie Miles, Bryn Hubbard, Duncan Quincey, Evan Miles, and Ann Rowan

09:05 – 09:11
D2509 | EGU2020-5057
Satellite remote sensing of ice cliff migration
Bas Altena and Andreas Kääb

09:11 – 09:17
D2511 | EGU2020-17912
Geomorphological mapping of an alpine rock glacier with multi-temporal UAV-based high density point cloud comparison
Francesca Bearzot, Roberto Garzonio, Biagio Di Mauro, Umberto Morra Di Cella, Edoardo Cremonese, Paolo Pogliotti, Paolo Frattini, Giovanni B. Crosta, Roberto Colombo, and Micol Rossini

09:17 – 09:23
D2512 | EGU2020-10373
60 years of rock glacier displacements and fluxes changes over Laurichard Rock glacier, French Alps.
Diego Cusicanqui, Antoine Rabatel, and Xavier Bodin

09:23 – 09:29
D2513 | EGU2020-1605
Creating a rock glacier inventory of the northern Nyainqêntanglha range (Tibetan Plateau) based on InSAR time-series analysis
Eike Reinosch, Johannes Buckel, Markus Gerke, Jussi Baade, and Björn Riedel

09:29 – 09:35
D2514 | EGU2020-8159
Pushing the limits of electrical resistivity tomography measurements on a rock glacier at 5500 m a.s.l. on the Tibetan Plateau: Successes and Challenges
Nora Krebs, Anne Voigtländer, Matthias Bücker, Andreas Hördt, Ruben Schroeckh, and Johannes Buckel

09:35 – 09:40
D2515 | EGU2020-7266
What makes a rock glacier? Insights into the structure and dynamics of an active rock glacier on the Tibetan Plateau
Johannes Buckel, Eike Reinosch, Nora Krebs, Anne Voigtländer, Michael Dietze, Ruben Schroeckh, Matthias Bücker, and Andreas Hördt


RUNNING ORDER OF ABSTRACTS (5 Min per display)

09:40 – 09:45
D2501 | EGU2020-1065
Reconstruction of Early Holocene jokulhlaups along the Hvita River and Gullfoss waterfall, Iceland
Greta Wells, Þorsteinn Sæmundsson, Sheryl Luzzadder-Beach, Timothy Beach, and Andrew Dugmore

09:45 – 09:50
D2503 | EGU2020-12571
A landsystems approach to understanding the evolution of ice-cored topography and distribution of retrogressive thaw slumps, western Canadian Arctic
Peter Morse, Stephen Wolfe, and Steve Kokelj

09:50 – 09:55
D2504 | EGU2020-17710
Quantifying contemporary debris supply in a debris-covered glacier catchment using high-resolution repeat terrestrial LiDAR
Rebecca Stewart, Matthew Westoby, Stuart Dunning, Francesca Pellicciotti, and John Woodward

09:50 – 09:55
D2505 | EGU2020-382
Debris cover growth, ensuing changes in morphology and impact on glacier processes at Pensilungpa Glacier, western Himalaya, India
Purushottam Kumar Garg, Aparna Shukla, Vinit Kumar, and Manish Mehta

09:55 – 10:00
D2506 | EGU2020-10593
A comparison of the drainage systems of two High Asian debris-covered glaciers
Catriona Fyffe, Evan Miles, Marin Kneib, Reeju Shrestha, Rebecca Stewart, Stefan Fugger, Matthew Westoby, Thomas Shaw, Wei Yang, and Francesca Pellicciotti

10:00 – 10:05
D2508 | EGU2020-20006
Characteristics and interannual changes of ice cliffs on the debris-covered glaciers of HMA
Marin Kneib, Evan Miles, Pascal Buri, and Francesca Pellicciotti

10:05 – 10:10
D2510 | EGU2020-8475
Improving geomorphological process understanding of complex glacier surfaces using aerial robotics
Matt Westoby, David Rounce, Thomas Shaw, Catriona Fyffe, Peter Moore, Rebecca Stewart, and Ben Brock

10:10 – 10:15 Summary and open discussion





Second part (Wednesday, 6 May 2020, 10:45 – 12:30 CEST)
Chairperson: Adina E. Racoviteanu

We will discuss 9 displays and 8 abstracts.

RUNNING ORDER OF DISPLAYS (6 Min per display)

10:45 – 10:49
Sign in and introduction

10:49 – 10:55
D2516 | EGU2020-19637
Occurrence and characteristics of ice-debris landforms in Poiqu basin (central Himalaya)
Tobias Bolch, Philipp Rastner, Jan Bouke Pronk, Atanu Bhattacharya, Lin Liu, Yan Hu, Guoqing Zhang, and Tandong Yao

10:55 – 11:01
D2519 | EGU2020-5050
Pore water pressure dynamics in a rock slope adjacent to a retreating valley glacier
Marc Hugentobler, Simon Loew, and Clément Roques

11:01 – 11:07
D2521 | EGU2020-21253
Bedload dynamics in the rapidly changing paraglacial zone of a high alpine catchment
Clemens Hiller, Kay Helfricht, Gabriele Schwaizer, Severin Hohensinner, Kerstin Wegner, Florian Haas, and Stefan Achleitner

11:07 – 11:12
D2523 | EGU2020-19854
Ice thickness measurements of the debris covered Ngozumpa glacier, Nepal
Lindsey Nicholson, Fabien Maussion, Christoph Mayer, Hamish Pritchard, Astrid Lambrecht, Anna Wirbel, and Christoph Klug

11:12 – 11:18
D2525 | EGU2020-5954
The geomorphology of debris-covered Ponkar Glacier, Nepal
Neil Glasser, Adina Racoviteanu, Stephan Harrison, Matthew Peacey, Rakesh Kayastha, and Rijan Bhakta Kayastha

11:18 – 11:24
D2526 | EGU2020-22638
The debris cover surface of Ponkar glacier: a laboratory for learning
Adina E. Racoviteanu, Neil F. Glasser, Smriti Basnett, Rakesh Kayastha, and Stephan Harrison

11:24 – 11:30
D2528 | EGU2020-20062
Glaciological controls on the spatial variability of supraglacial debris extent and thickness in the eastern Himalayas
Karla Boxall and Ian Willis


11:30 – 11:36
D2532 | EGU2020-11290
Estimating the style and duration of former glaciation in the mountains of Britain and Ireland
Iestyn Barr, Jeremy Ely, Matteo Spagnolo, Ian Evans, and Matt Tomkins

11:36 – 11:42
D2534 | EGU2020-11220
Inland dune field and deposits at Dviete: evidences of the late Pleistocene aeolian morphogenesis and landscape evolution during transition from glacial to post-glacial conditions in South-eastern Latvia
Juris Soms and Zane Egle

RUNNING ORDER OF ABSTRACTS (5 Min per display)

11:42 – 11:47
D2517 | EGU2020-8967
Post-Little Ice Age retreat of glaciers triggered rapid paraglacial landscape transformation in Sørkapp Land (Spitsbergen)
Justyna Dudek and Mateusz Czesław Strzelecki

11:47 – 11:52
D2518 | EGU2020-17195
Paraglacial Cirque Headwall Instability - Regional Scale Assessment Of Preconditioning Factors
Andreas Ewald and Jan-Christoph Otto

11:52 – 11:57
D2522 | EGU2020-685
Linking glacial lake expansion with glacier dynamics: An assessment of the South Lhonak lake, Sikkim Himalaya
Saurabh Kaushik, Pawan Kumar Joshi, Tejpal Singh, and Anshuman Bhardwaj

11:57 – 12:02
D2527 | EGU2020-16328
The challenge of non-stationary feedbacks within the response of debris-covered glaciers to climate forcing
Anna Wirbel, Lindsey Nicholson, Christoph Mayer, and Astrid Lambrecht

12:02 – 12:07
D2529 | EGU2020-6650
Spatial distribution of debris cover and its impacts in the Hunza River Basin
Yong Zhang, Shiyin Liu, and Xin Wang

12:07 – 12:12
D2530 | EGU2020-11588
Carbon gas cycling in supraglacial debris covers
Ben Brock, Grace Brown, Paul Mann, and Stuart Dunning

12:12 – 12:17
D2531 | EGU2020-10825
A catastrophic Late Pleistocene debris flow sourced in the glaciated High Atlas of Morocco
Madeleine Hann, Jamie Woodward, Philip Hughes, and Edward Rhodes

12:17 – 12:22
D2533 | EGU2020-13381
Coastal morphodynamics in an Arctic fluvial-tidal transition zone in the deglaciated Dicksonfjord, Svalbard
Dohyeong Kim, Joohee Jo, and Kyungsik Choi

12:22 – 12:30
Open discussion / session summary

Share:
Co-organized by GM7
Convener: Johannes BuckelECSECS | Co-conveners: Adina Racoviteanu, Evan MilesECSECS, Lindsey Nicholson, Tobias Bolch, Anne VoigtländerECSECS, Jasper Knight, Darren Jones
Displays
| Attendance Wed, 06 May, 08:30–12:30 (CEST)
CR4.2

The Permafrost Open Session is a platform for the presentation and discussion of current research focusing on (a) permafrost and associated natural systems; (b) the interaction of permafrost and climate; (c) the impact of permafrost changes on both, natural and human systems; and (d) the measurement, understanding, modeling, and parameterization of corresponding processes. Contributions are welcome on high-latitude, mountain, and planetary permafrost.
Our program has two parts this year: Part 1, Morning, General Contributions; Part 2, Afternoon, Retrogressive Thaw Slumps.

We look forward to a high-quality session with a high number of contributions that reflect diverse scientific fields, approaches, and geographic locations. We would like to especially encourage contributions that (a) present novel measurement and monitoring approaches; (b) present new strategies to improve process understanding; (c) come from or interface with differing fields of science or innovative technologies and methods; (d) investigate model validation, model uncertainty, or spatial and temporal scale/scalability; (e) couple models of diverse processes or scales.

The Permafrost Open Session complements several other sessions with more specific foci (such as natural hazards, geophysics, or geomorphology) and is intended to be the forum for research primarily focusing on permafrost phenomena.

This year we also have a special section on retrogressive thaw slumps, rapid degradation features in ice-rich permafrost. This section focuses on (1) modern thaw slumps dynamics monitored by onsite and remote sensing as well as geophysical methods, (2) on quality and quantity of released material and its impact on adjacent ecosystems, and (3) on still preserved Quaternary inventories of fossil organic matter and ground ice that are accessible in thaw slump headwalls.

Public information:
Please note that the order and number of presentations has been changed as some authors could not attend under the circumstances.
Authors are kindly asked to upload display material by Sunday, 3rd May, 2020, 16:00 CEST, so that there is some time prior to the online chat for viewing the displays.


Morning Session Tuesday 05 May, 10:45–12:30 CEST (Conveners Sebastian Wetterich, Thomas Opel)

10.45 - 10.50
Sign in and introduction to morning session

10.50 – 10.55
D2656 | EGU2020-16115
Climate extremes relevant for permafrost degradation
Goran Georgievski, Stefan Hagemann, Dmitry Sein, Dmitry Drozdov, Andrew Gravis, Vladimir Romanovsky, Dmitry Nicolsky, Alexandru Onaca, Florina Ardelean, Marinela Chețan, and Andrei Dornik

10.55 – 11.01
D2683 | EGU2020-9106
Recent ground thermal dynamics and variations in northern Eurasia
Liangzhi Chen, Juha Aalto, and Miska Luoto

11.01 – 11.07
D2651 | EGU2020-8473
Integrating subsea permafrost into an Earth System Model (MPI-ESM)
Stiig Wilkenskjeld, Paul Overduin, Frederieke Miesner, Matteo Puglini, and Victor Brovkin

11.07 – 11.12
D2669 | EGU2020-10477
Representing Arctic coastal erosion in the Max Planck Institute Earth System Model (MPI-ESM)
David Marcolino Nielsen, Johanna Baehr, Victor Brovkin, and Mikhail Dobrynin

11.12 – 11.18
D2695 | EGU2020-18397
Upscaling of geophysical measurements: A methodology for the estimation of the total ground ice content at two study sites in the dry Andes of Chile and Argentina
Tamara Mathys, Christin Hilbich, Cassandra E.M. Koenig, Lukas Arenson, and Christian Hauck

11.18 – 11.23
D2693 | EGU2020-15162
The potential of satellite derived surface state to empirically estimate pan-arctic ground temperature at specific depths and the essential role of in-situ data
Christine Kroisleitner, Annett Bartsch, Birgitt Heim, and Mareike Wiezorek

11.23 – 11.29
D2653 |EGU2020-10903
20 years of mountain permafrost monitoring in the Swiss Alps: key results and major challenges
Jeannette Noetzli and Cécile Pellet

11.29 – 11.34
D2681 | EGU2020-7489
Quantification of ground ice through petrophysical joint inversion of seismic and electrical data applied to alpine permafrost
Coline Mollaret, Florian M. Wagner, Christin Hilbich, and Christian Hauck

11.34 – 11.39
D2692 | EGU2020-14047
Permafrost monitoring by reprocessing and repeating historical geoelectrical measurements
Christian Hauck, Christin Hilbich, Coline Mollaret, and Cécile Pellet

11.39 – 11.44
D2694 | EGU2020-18276
THM Experiment for the Investigation of Freeze-Thaw Processes in Soils and Grouting Materials
Jan Christopher Hesse, Markus Schedel, Bastian Welsch, and Ingo Sass

11.44 – 11.49
D2654 |EGU2020-10183
Measuring and modelling thermal erosion patterns of peat plateaus in northern Norway Sebastian Westermann, Leo Martin, Jan Nitzbon, Kjetil Aas, Johanna Scheer, Trond Eiken, and Bernd Etzelmüller

11.49 – 11.54
D2690 | EGU2020-13874
Towards mechanical modeling of rock glaciers from modal analysis of passive seismic data
Antoine Guillemot, Laurent Baillet, Stéphane Garambois, Xavier Bodin, Éric Larose, Agnès Helmstetter, and Raphaël Mayoraz

11.54 – 11.59
D2659 | EGU2020-6965
Monitoring rapid permafrost thaw using elevation models generated from satellite radar interferometry
Philipp Bernhard, Simon Zwieback, Silvan Leinss, and Irena Hajnsek

11.59 – 12.04
D2667 | EGU2020-746
The specificity of thermal denudation feature distribution on Yamal and Gydan peninsulas, Russia
Nina Nesterova, Artem Khomutov, Arina Kalyukina, and Marina Leibman

12.04 – 12.09
D2672 | EGU2020-2999
Multi-method dating of ancient permafrost of the Batagay megaslump, East Siberia
Sebastian Wetterich, Julian B. Murton, Phillip Toms, Jamie Wood, Alexander Blinov, Thomas Opel, Margret C. Fuchs, Silke Merchel, Georg Rugel, Andreas Gärtner, and Grigoriy Savvinov

12.09 – 12.14
D2673 | EGU2020-3748
Ground-ice stable-isotope paleoclimatology at the Batagay megaslump, East Siberia
Thomas Opel, Sebastian Wetterich, Hanno Meyer, and Julian Murton

12.14 – 12.19
D2675 | EGU2020-20513
Vegetation at the northern pole of cold during the climate extremes of the late Pleistocene: fossil records from the Batagay mega thaw slump, Yakutia
Frank Kienast, Kseniia Ashastina, Svetlana Kuzmina, and Natalya Rudaya

12.19 – 12.24
D2674 | EGU2020-21041
Characterisation of East Siberian paleodiversity based on ancient DNA analyses of the Batagay megaslump exposure
Jeremy Courtin, Amedea Perfumo, Kathleen Stoof-Leichsenring, and Ulrike Herzschuh

12.24 – 12.30
Open discussion / session summary



Afternoon session Tuesday 05 May, 14:00–15:45 CEST (Conveners Sebastian Wetterich, Florence Magnin, Trevor Porter)

14.00 – 14.05
Sign in and introduction to afternoon session

14.05 – 14.10
D2686 |EGU2020-10837
Does shrubs growth in the high-Arctic lead to permafrost warming?
Florent Domine, Georg Lackner, Maria Belke-Brea, Denis Sarrrazin, and Daniel Nadeau

14.10 – 14.16
D2689 | EGU2020-13452
How do microorganisms from permafrost soils respond to short-term warming?
Victoria Martin, Julia Wagner, Niek Speetjens, Rachele Lodi, Julia Horak, Carolina Urbina-Malo, Moritz Mohrlok, Cornelia Rottensteiner, Willeke a' Campo, Luca Durstewitz, George Tanski, Michael Fritz, Hugues Lantuit, Gustaf Hugelius, and Andreas Richter

14.16 – 14.21
D2655 | EGU2020-21805
Decade of permafrost thaw in a subarctic palsa mire alters carbon fluxes without affecting net carbon balance
Carolina Olid, Jonatan Klaminder, Sylvain Monteux, Margareta Johansson, and Ellen Dorrepaal

14.21 – 14.27
D2677 | EGU2020-1428
Modelled (1990-2100) Variations in Active-Layer Thickness and Ice-Wedge Activity Near Salluit, Nunavik (Canada)
Samuel Gagnon and Michel Allard

14.27 – 14.32
D2670 | EGU2020-17801
Thermal behaviour of retrogressive thaw slumps over time revealed by ERT - an example from Herschel Island, Canada
Saskia Eppinger, Michael Krautblatter, Hugues Lantuit, and Michael Fritz

14.32 – 14.37
D2660 | EGU2020-14201
Multi-methodological investigation of a retrogressive thaw slump in the Richardson Mountains, Northwest Territories, Canada
Julius Kunz, Christof Kneisel, Tobias Ullmann, and Roland Baumhauer

14.37 – 14.42
D2679 | EGU2020-2927
Slope hydrology and permafrost: The effect of snowmelt N transport on downslope ecosystem
Laura Helene Rasmussen, Per Ambus, Wenxin Zhang, Per Erik Jansson, Anders Michelsen, and Bo Elberling

14.42 – 14.47
D2662 | EGU2020-10567
Downstream persistence of particulate organic carbon released from thaw slumps on the Peel Plateau, NT, Canada
Sarah Shakil, Suzanne Tank, Steve Kokelj, and Jorien Vonk

14.47 – 14.52
D2661 | EGU2020-7176
Characterization of mobilized sediments and organic matter in retrogressive thaw slumps on the Peel Plateau, NWT, Canada
Lisa Bröder, Kirsi Keskitalo, Scott Zolkos, Sarah Shakil, Suzanne Tank, Tommaso Tesi, Bart van Dongen, Negar Haghipour, Timothy Eglinton, and Jorien Vonk

14.52 – 14.57
D2671 | EGU2020-12181
Long-term warming of Holocene winter temperatures in the Canadian Arctic recorded in stable water isotope ratios of ice wedges
Trevor Porter, Kira Holland, Duane Froese, and Steven Kokelj

14.57 – 15.03
D2678 | EGU2020-2416
The influence of radiative forcing on permafrost temperatures in Arctic rock walls
Juditha Schmidt, Sebastian Westermann, Bernd Etzelmüller, and Florence Magnin

15.03 – 15.08
D2685 | EGU2020-10325
Modelling of long-term permafrost evolution in the discontinuous permafrost zone of North-West Siberia
Ekaterina Ezhova, Ilmo Kukkonen, Elli Suhonen, Olga Ponomareva, Andrey Gravis, Viktor Gennadinik, Victoria Miles, Dmitry Drozdov, Hanna Lappalainen, Vladimir Melnikov, and Markku Kulmala

15.08 – 15.13
D2698 | EGU2020-19984
New multi-phase thermo-geophysical model: Validate ERT-monitoring & assess permafrost evolution in alpine rock walls (Zugspitze, German/Austrian Alps)
Tanja Schroeder, Riccardo Scandroglio, Verena Stammberger, Maximilian Wittmann, and Michael Krautblatter

15.13 – 15.18
D2696 | EGU2020-18808 Climate-change-induced changes in steep alpine permafrost bedrock. 13 years of 3D-ERT at the Steintälli ridge, Switzerland.
Riccardo Scandroglio and Michael Krautblatter

15.18 – 15.23
D2697 | EGU2020-19575
Modelling water-related processes in rock wall permafrost
Florence Magnin, Jean-Yves Josnin, Ludovic Ravanel, and Philip Deline

15.23 – 15.28
D2684 | EGU2020-9534
Why rock glacier deformation velocities correlate with both ground temperatures and water supply at multiple temporal scales
Robert Kenner, Luisa Pruessner, Jan Beutel, Philippe Limpach, and Marcia Phillips

15.28 – 15.33
D2682 |EGU2020-8076
Long-term energy balance measurements at three different mountain permafrost sites in the Swiss Alps
Martin Hoelzle, Christian Hauck, Jeannette Noetzli, Cécile Pellet, and Martin Scherler

15.33 – 15.39
D2658 |EGU2020-12498
Slope thermokarst transforms permafrost preserved glacial landscapes and effects propagate through Arctic drainage networks.
Steve Kokelj, Justin Kokoszka, Jurjen van der Sluijs, Ashley Rudy, Jon Tunnicliffe, Sarah Shakil, Suzanne Tank, and Scott Zolkos

15.39 – 15.45
Open discussion / session summary

Share:
Convener: Reginald Muskett | Co-conveners: Florence Magnin, Michael Krautblatter, Sebastian Wetterich, Thomas Opel, Trevor Porter, Melissa Ward JonesECSECS
Displays
| Attendance Tue, 05 May, 10:45–12:30 (CEST), Attendance Tue, 05 May, 14:00–15:45 (CEST)
ITS5.9/EOS4.14

World-wide an increasing number of research projects focus on the challenges associated with changes in the Arctic regions. Whereas these often have a natural and physical science focus, this session focuses on trans-disciplinary approaches to study the multiple phenomena associated with global warming, especially but not exclusively in Arctic regions. Another focus is to understand better how to tackle these in large, trans-disciplinary research projects, initiatives and programs (e.g. HORIZON2020 Nunataryuk, INTAROS and the T-MOSAIC program of the International Arctic Research Council, NSF Navigating the New Arctic), as well as communicating results effectively to the public in terms of outreach and education. Contributions are invited, but are not limited, to the following themes:
• science communication, education and outreach tools, and co-production of knowledge
• integration of social and natural science approaches
• indigenous and collaborative approaches to adaptation and mitigation, equitable mitigation, and risk perception
• socio-economic modelling in relation to Arctic environmental change,
• examining the impacts of permafrost thaw and other phenomena on health and pollution as well as infrastructure (and consequences of the built environment).

One of the aims of this session is to bring together researchers from both social and natural sciences who are involved or interested in reaching out to stakeholders and the general public, and share successful experiences. Examples from past, ongoing and future initiatives that include traditional indigenous knowledge and scientific tools and techniques are welcome.

This session merged from

ITS5.9/EOS4.14
Trans-disciplinary aspects of researching permafrost thaw: science communication, integration, monitoring, modelling and risk perception
Co-organized by CL4/CR4/GM7/HS12/NH9
Convener: Peter Schweitzer | Co-conveners: Annett Bartsch, Susanna Gartler

EOS4.1
Where human and natural systems meet: promoting innovative tools for Arctic outreach and education
Convener: Terenzio zenone | Co-conveners: Frederic Bouchard, Stein Sandven, Ylva Sjöberg, Donatella zona

CR4.5
Towards collaborative frameworks for permafrost research that incorporate northern principles: challenges and opportunities
Convener: Peter Morse | Co-conveners: Ryley Beddoe, Hugh O'Neill, Ashley Rudy, Greg Sieme

Share:
Co-organized by CL4/CR4/GM7/HS12/NH9
Convener: Peter Schweitzer | Co-conveners: Susanna GartlerECSECS, Annett Bartsch, Terenzio zenone, Frederic Bouchard, Stein Sandven, Donatella Zona, Ylva Sjöberg
Displays
| Attendance Fri, 08 May, 08:30–10:15 (CEST)
BG4.3

Permafrost thaw is expected to amplify the release of previously frozen material from terrestrial into aquatic systems: rivers, lakes, groundwater and oceans. Current projections include changes in precipitation patterns, active layer drainage and leaching, increased thermokarst lake formation, as well as increased coastal and river bank erosion that are further enhanced by rising water temperatures, river discharge and wave action. In addition, subsea permafrost that formed under terrestrial conditions but was later inundated might be rapidly thawing on Arctic Ocean shelves. These processes are expected to substantially alter the biogeochemical cycling of carbon but also of other elements in the permafrost area.
This session invites contributions on the mobilization of terrestrial matter to aquatic systems in the permafrost domain, as well as its transport, processing and potential interaction with autochthonous, aquatic matter. We encourage submissions focusing on organic and inorganic carbon as well as on other elements such as nitrogen, phosphorus, silica, iron, mercury and others, from all parts of the global permafrost area including mountain, inland, coastal and subsea permafrost, on all spatial scales, in the contemporary system but also in the past and future, based on field, laboratory and modelling work.

Public information:
The session will follow a loose sequence from permafrost soils to lakes, rivers, and the Arctic Ocean, closing with Arctic Ocean methane (see the list in session materials). Welcome!

Share:
Co-organized by CR4/HS13
Convener: Birgit WildECSECS | Co-conveners: Lisa BröderECSECS, Örjan Gustafsson
Displays
| Attendance Fri, 08 May, 10:45–12:30 (CEST)
GM7.1

Present-day glacial and periglacial processes in cold regions, i.e. arctic and alpine environments, provide also modern analogues to processes and climatic changes that took place during the Pleistocene, including gradual retreat or collapse of ice sheets and mountain glaciers, and thawing and shrinking of low-land permafrost. Current geomorphological and glaciological changes in mid-latitude mountain ranges could also serve as a proxy for future changes in high-latitude regions within a context of climate change. Examples are speed-up or disintegration of creeping permafrost features or the relictification of rock glaciers.

For our session we invite contributions that either:
1. investigate present-day glacial and/or periglacial landforms, sediments and processes to describe the current state, to reconstruct past environmental conditions and to predict future scenarios in cold regions; or
2. have a Quaternary focus and aim at enhancing our understanding of past glacial, periglacial and paraglacial processes, also through the application of dating techniques.

Case studies that use a multi-disciplinary approach (e.g. field, laboratory and modelling techniques) and/or that highlight the interaction between the glacial, periglacial and paraglacial cryospheric components in cold regions are particularly welcome.

Keynote lectures:
Britta Sannel (Stockholm): Landscape dynamics in permafrost peatlands - past, present and uncertain future
Clare Boston (Portsmouth): The response of Østre Svartisen icefield, Norway, to 20th/21st Century climate change

Share:
Co-organized by CL4/CR4
Convener: Andreas Kellerer-Pirklbauer | Co-conveners: Natacha Gribenski, Isabelle Gärtner-Roer, Sven Lukas
Displays
| Attendance Thu, 07 May, 08:30–10:15 (CEST)
GM7.2

Mountain glaciations provide an invaluable record for past and present climate change. The utilization of this potential is, however, not trivial because of the wide diversity of formerly and currently glaciated mountain ranges. In addition to their dynamic, complex, and interacting geomorphological process-systems, the specific different climatic and glaciological conditions make any subsequent global or intra-hemispheric correlations incredibly challenging. This problem is further enhanced by ongoing specialisation within the scientific community. Working groups primarily focusing on either individual aspects or selected mountain regions often remain somewhat disconnected. Only if significant bridging between specialised research communities is guaranteed, progress with the understanding of the complex interactions within mountain ranges can be achieved.
The primary aim of this session is to evaluate the potential of mountain glaciations records and stimulate further research in this important field of research. Contributions on all relevant aspects of the topic are welcomed, for example: (a) glacial landforms and reconstruction of past glaciers, (b) dating techniques and geochronology compilations, (c) glacier dynamics and palaeoclimatic interpretations, or (d) impacts of ecosystems and human evolution/society. Submissions targeting these connections are specifically encouraged. While we encourage submitting abstracts from all abovementioned topics within the broad field of mountain glaciations, we would like to invite in particular those highlighting the specific conditions of mountain glaciations or addressing the relationship and connections between different of their aspects. To address the diversity of mountain glaciations, contributions from high-, middle-, and low-latitude mountain ranges as well as from continental to maritime regions are all welcomed. The time scale of the session will cover the whole time range from Early Pleistocene glaciations to the LGM and Holocene/modern glaciers.

Solicited talk: Ann Rowan "Accelerating recent mass loss from debris-covered Khumbu Glacier in Nepal, and projected response to climate change by 2200 CE"

The session is a platform for everyone interested in the emerging collaborative research network “The Legacy of Mountain Glaciations” and a related splinter meeting (SMP 1) is scheduled for Wednesday, May 6th at 12.45 in room: 0.51. Please use this opportunity to meet and exchange ideas and expertise.

Share:
Co-organized by CR4/SSP2
Convener: Stefan Winkler | Co-conveners: Lauren KnightECSECS, Giovanni Monegato, Jürgen Reitner
Displays
| Attendance Thu, 07 May, 10:45–12:30 (CEST)
SSP3.21

Bedrock depressions are common features of past and modern glacial landscapes. They are often referred to as overdeepenings and act as important terrestrial archives. Which processes control the formation and geometry of glacial overdeepenings? How did they evolve over time? Which chronological and environmental information can be derived from the sedimentary record? These are the questions that will be addressed in this session.

The timing, extent and driving mechanisms for the last major glacial cycle are increasingly better understood but remain poorly constrained for previous cycles. The early conceptual models, initially adopted to understand older glaciations, neglected much of the spatial and temporal complexity of glaciations. Furthermore, they suffered from a lack of constraining data, which is mainly due to the surficial incompleteness of the terrestrial records.
Some of these limitations may be overcome by studying the sedimentary infill of subglacially formed basins. It is generally accepted that glacial processes, supported by subglacial water, have carved these overdeepenings. However, considerable uncertainties remain concerning the erosional mechanisms and physical constraints.
The sedimentary record in overdeepenings is diverse, including glacial, glacio-lacustrine and fluvial sediments. Investigated records suggest that many overdeepened basins contain a multi-cycle infilling and erosion history. Overdeepenings may therefore act as sediment storages on the timescale of several glacial-interglacial cycles, and provide a valuable record of a landscape’s glacial history. The combination of sedimentological, geophysical, and chronological methods together with the application of landscape evolution models provides new insights into the development of these bedrock features and allows constraining the environmental conditions in the geological past.

This session shall stimulate discussions concerning the formation of subglacial depressions and that aim at deciphering the sedimentary fill of overdeepenings. Contributions may include investigations based on field observations and/or modelling of modern, Quaternary and pre-Quaternary glacial settings. Possible topics cover: (a) glacial and interglacial stratigraphic successions preserved in overdeepenings, (b) subglacial erosion and deposition, (c) glaciation chronology, and (d) landscape evolution.

Share:
Co-organized by CR4/GM7, co-sponsored by IAS
Convener: Michael SchwenkECSECS | Co-conveners: Marius BuechiECSECS, Thomas BurschilECSECS, Urs Fischer, Bernhard Salcher
Displays
| Attendance Mon, 04 May, 10:45–12:30 (CEST)