Inter- and Transdisciplinary Sessions
Disciplinary sessions AS–GM
Disciplinary sessions GMPV–TS

Session programme


GM – Geomorphology

GM2 – Geomorphologist's Tools, Models and Methods


Geomorphometry and geomorphological mapping are important tools used for understanding landscape processes and dynamics on Earth and other planetary bodies. Recent rapid growth of technology and advances in data collection methods has made available vast quantities of geospatial data for such morphometric analysis and mapping, with the geospatial data offering unprecedented spatio-temporal range, density, and resolution. This explosion in the availability of geospatial data opens up considerable possibilities for morphometric analysis and mapping (e.g. for recognising new landforms and processes), but it also presents new challenges in terms of data processing and analysis.

This inter-disciplinary session on geomorphometry and landform mapping aims to bridge the gap between process-focused research fields and the technical domain where geospatial products and analytical methods are developed. The increasing availability of a wide range of geospatial datasets requires the continued development of new tools and analytical approaches as well as landform/landscape classifications. However, a potential lack of communication across disciplines results in efforts to be mainly focused on problems within individual fields. We aim to foster collaboration and the sharing of ideas across subject-boundaries, between technique developers and users, enabling us as a community to fully exploit the wealth of geospatial data that is now available.

We welcome perspectives on geomorphometry and landform mapping from ANY discipline (e.g. geomorphology, planetary science, natural hazard assessment, computer science, remote sensing). This session aims to showcase both technical and applied studies, and we welcome contributions that present (a) new techniques for collecting or deriving geospatial data products, (b) novel tools for analysing geospatial data and extracting innovative geomorphometric variables, (c) mapping and/or morphometric analysis of specific landforms as well as whole landscapes, and (d) mapping and/or morphometric analysis of newly available geospatial datasets. Contributions that demonstrate multi-method or inter-disciplinary approaches are particularly encouraged. We also actively encourage contributors to present tools/methods that are “in development”.

Co-organized by ESSI2/NH3/PS4
Convener: Giulia Sofia | Co-conveners: Benjamin ChandlerECSECS, Frances E. G. ButcherECSECS, Susan Conway, Marek Ewertowski, Stuart GrieveECSECS, John K. HillierECSECS, Aleksandra Tomczyk
| Attendance Mon, 04 May, 14:00–15:45 (CEST)

Geochronological frameworks are essential for the study of landscape evolution. Over the last decades, geochronological techniques such as cosmogenic nuclides, thermochronology, radiocarbon and luminescence dating have improved in accuracy, precision, and temporal range. Recently, the development of new approaches, new isotopic/mineral systems and the opportunity to combine these techniques are expanding their range of applications. This session explores these advances and novel applications. These include studies of erosional rates and processes, sediment provenance, burial and transport times, bedrock exposure or cooling histories, landscape dynamics, and the examination of potential biases and discordances in geochronological data. We appreciate contributions that use dating tools which are established or in development, particularly those that quantify geomorphological processes with novel approaches and/or generic implications. We encourage studies that combine different techniques (e.g., CRN, luminescence, thermochronology, etc.) or data sets (e.g., field, remote sensing, numerical modelling), and/or highlight the latest developments and open questions in the application of geochronometers to landscape evolution questions.

Solicited presenter: Nathan Brown - UC Berkeley (USA)

Co-organized by CL5
Convener: Stefanie TofeldeECSECS | Co-conveners: Georgina King, Sebastian Kreutzer, Duna Roda-BoludaECSECS, Renee van Dongen
| Attendance Fri, 08 May, 08:30–10:15 (CEST)

Characterizing and monitoring Earth surface processes often requires the development of challenging scientific approaches leading to the rise of innovative techniques. From the highest mountains to the deepest oceans, passive to active monitoring techniques are in constant progress and push further terra incognita boundaries. In particular, seismic techniques are becoming widely used to detect and quantitatively characterise a wide variety of natural processes occurring at the Earth’s surface. These processes include mass movements such as landslides, rock falls, debris flows and lahars; glacial phenomena such as icequakes, glacier calving/serac falls, glacier melt and supra- to sub-glacial hydrology; snow avalanches; water storage and water dynamics phenomena such as water table changes, river flow turbulence and fluvial sediment transport. Where other methods often provide limited spatial and temporal coverage, seismic observations allow recovering sequences of events with high temporal resolution and over large areas. In addition to seismic techniques, recent advances in other in-situ geophysical instrumentation (e.g. Doppler radar, sub bottom profilers, etc.) or remote sensing techniques (e.g. inSAR, unmanned aerial systems, unmanned maritime systems, etc.) have made remote monitoring and data acquisition a reality. These novel techniques represent more affordable, practical solutions for the collection of spatial and temporal data sets in challenging environments.
These observational capabilities allow establishing connections with meteorological drivers, and give unprecedented insights on the underlying physics of the various Earth’s surface processes as well as on their interactions (chains of events). These capabilities are also of first interest for real time hazards monitoring and early warning purposes.
This session aims to bring together research on seismic methods as well as holistic, novel and/or in-development monitoring solutions to study Earth surface dynamics, particularly in challenging and hostile areas. We welcome contributions from a broad range of disciplines (including geomorphology, cryospheric sciences, seismology, natural hazards, volcanology, soil system sciences and hydrology) and applications (from landslides, snow avalanches, glaciers, cave systems, marine/lake and submarine systems, to volcano and permafrost monitoring).

Solicited presenter: Zack Spica - University of Michigan (USA)

Co-organized by GI5/NH4/SM1
Convener: Anne SchöpaECSECS | Co-conveners: Wei-An ChaoECSECS, Velio CovielloECSECS, Andrea Manconi, Arnaud WatletECSECS, Zakaria GhazouiECSECS
| Attendance Wed, 06 May, 16:15–18:00 (CEST)

Smart monitoring and observation systems for natural hazards, including satellites, seismometers, global networks, unmanned vehicles (e.g., UAV), and other linked devices, have become increasingly abundant. With these data, we observe the restless nature of our Earth and work towards improving our understanding of natural hazard processes such as landslides, debris flows, earthquakes, floods, storms, and tsunamis. The abundance of diverse measurements that we have now accumulated presents an opportunity for earth scientists to employ statistically driven approaches that speed up data processing, improve model forecasts, and give insights into the underlying physical processes. Such big-data approaches are supported by the wider scientific, computational, and statistical research communities who are constantly developing data science and machine learning techniques and software. Hence, data science and machine learning methods are rapidly impacting the fields of natural hazards and seismology. In this session, we will see research from natural hazards and seismology for processes over a broad range of time and spatial scales.

Dr. Pui Anantrasirichai of the University of Bristol, UK will give the invited presentation:
Application of Deep Learning to Detect Ground Deformation in InSAR Data

Co-organized by ESSI2/GI2/GM2/HS12/NP4/SM1
Convener: Hui TangECSECS | Co-conveners: Kejie ChenECSECS, Stephanie OlenECSECS, Fabio CorbiECSECS, Jannes Münchmeyer
| Attendance Wed, 06 May, 08:30–10:15 (CEST)

Environmental systems often span spatial and temporal scales covering different orders of magnitude. The session is oriented in collecting studies relevant to understand multiscale aspects of these systems and in proposing adequate multi-platform and inter-disciplinary surveillance networks monitoring tools systems. It is especially aimed to emphasize the interaction between environmental processes occurring at different scales. In particular, a special attention is devoted to the studies focused on the development of new techniques and integrated instrumentation for multiscale monitoring high natural risk areas, such as: volcanic, seismic, energy exploitation, slope instability, floods, coastal instability, climate changes and other environmental context.
We expect contributions derived from several disciplines, such as applied geophysics, geology, seismology, geodesy, geochemistry, remote and proximal sensing, volcanology, geotechnical, soil science, marine geology, oceanography, climatology and meteorology. In this context, the contributions in analytical and numerical modeling of geological and environmental processes are also expected.
Finally, we stress that the inter-disciplinary studies that highlight the multiscale properties of natural processes analyzed and monitored by using several methodologies are welcome.

Co-organized by AS4/CL2/GM2/GMPV9/NH8/NP3/OS4/SM5/SSS10
Convener: Pietro Tizzani | Co-conveners: Antonello Bonfante, Francesca Bianco, Raffaele Castaldo, Nemesio M. Pérez, Annalisa Cappello
| Attendance Fri, 08 May, 08:30–12:30 (CEST)

During the Quaternary Period, the last 2.6 million years of Earth's history, changes in environments, and climate shaped human evolution. In particular, large-scale features of atmospheric circulation patterns varied significantly due to the dramatic changes in global boundary conditions that accompanied abrupt changes in climate. Reconstructing these environmental changes relies heavily on precise and accurate chronologies. Dependent on records, time range, and research questions, different methods can be applied, or a combination of various dating techniques.
Varve counting and dendrochronology allow for the construction of high-resolution chronologies, whereas radiometric methods (radiocarbon, cosmogenic in-situ, U-Th) and luminescence aim at longer time scales and often are complementary or supportive.
In this session, contributions are particularly welcome that aim to (1) reduce, quantify and express dating uncertainties in any dating method, including high-resolution radiocarbon approaches; (2) use established geochronological methods to answer new questions; (3) use new methods to address longstanding issues, or; (4) combine different chronometric techniques for improved results, including the analysis of chronological datasets with novel methods, e.g. Bayesian age-depth modelling. Applications may aim to understand long-term landscape evolution, quantify rates of geomorphological processes, or provide chronologies for records of climate change.

Co-organized by GM2/SSS3
Convener: Irka Hajdas | Co-conveners: Andreas Lang, Gina E. Moseley, Arne RamischECSECS
| Attendance Wed, 06 May, 08:30–10:15 (CEST)

Hydromorphological processes in aquatic environments such as rivers, estuaries as well as lakes and reservoirs, include entrainment, transport, deposition and sorting processes which are key features for various research disciplines, e.g. geomorphology and paleoclimatology or hydraulics and river engineering. An accurate evaluation of entrainment, transport and deposition transport rates as well as limited supply processes like e.g. scouring or grain sorting, effecting channel morphology and bed composition, is fundamental for an adequate development of conceptual sediment budget models and for the calibration and validation of numerical tools. With improved algorithms as well as an increasing computational power, it became feasible to simulate the interaction of water, sediments and air (multiphase flows) with high resolution in space and time. In addition, with an increasing quantity and quality of validation and verification data, both from laboratory experiments and field studies, numerical models become more accurate and it is possible to gain new insight in complex physical processes, e.g. dune development, river bed armoring or density driven transport.

The main goal of this session is to bring together the community of scientists, scholars and engineers, investigating, teaching and applying novel measurement techniques, monitoring concepts and numerical models, which are crucial to determine sedimentary and hydro-morphological processes in rivers, lakes and reservoirs, estuaries as well as in coastal and maritime environments. Within the focus of this session are the evaluation, quantification and modelling of bed load and suspended load, flocculation, settling, and re-suspension/erosion of such processes relevant to morphological channel changes as bed form development, horizontal channel migration, bed armouring and colmation.

Public information:
Welcome to our EGU online session
HS9.3/GM2.11 Measurements, monitoring and modelling of hydro-morphological processes in open-water environments.

As the format of presenting our research content in a chat is quite new to all of us, we would like to provide some brief information which will be updated on Tuesday evening, according to the response of the authors we got until then.

Our chat session is divided into two sections ( Wed, 06 May, 10:45–12:30 and Wed, 06 May, 14:00–15:45).
There are already many presentations uploaded, some are also open for discussion already. Please feel free to use this option and also check out the presentations prior to the chat session. If possible, prepare your questions in advance so that you can quickly copy / paste them when it is time to do so.

Every author who is interested to participate in the chat will be given a slot where she / he can briefly introduce the work and then answer questions.
The Displays will be presented in the same order as their numbering. Based on the feedback from the authors we set up a rough schedule, which you can find in the document "session material". Please be aware that some spontaneous adaptions might be needed.

Regarding the chat itself:
• All authors have the possibility to introduce their work in 3-4 sentences first. Then we will ask the participants to start with their questions.
• If possible, attendees should prepare their questions in advance so that you can copy / paste them
• For questions: please start your answer by @authorname. If it is related to the display, please indicate the slide's number. That will help to keep track of the discussion.
• When the timeslot is over there is still the possibility to ask / answer questions in the general EGU chat (instead of the session chat).
• The session chat is NOT recorded / stored anywhere.
• Do not forget to use the comment 's function on EGU2020 website .
• Please keep polite and patient, as we might face some technical issues, this procedure is quite new to al

Please find here also an information video from the EGU (https://www.youtube.com/watch?v=xTCPKDmgSVw)

Thanks a lot for your interest and hope to chat with you on Wednesday
the convener team
Kordula, Stefan, Gabi, Axel, Sandor, Stefan, Nils and Bernhard

Co-organized by GM2
Convener: Kordula Schwarzwälder | Co-conveners: Sándor Baranya, Stefan Haun, Nils Rüther, Bernhard Vowinckel, Stefan Achleitner, Gabriele Harb, Axel Winterscheid
| Attendance Wed, 06 May, 10:45–12:30 (CEST), Attendance Wed, 06 May, 14:00–15:45 (CEST)

All areas in the Earth sciences face the same problem of dealing with larger and more complex data sets that need to be analyzed, visualized and understood. Depending on the application domain and the specific scientific questions to be solved, different visualization strategies and techniques have to be applied. Yet, how we communicate those complex data sets, and the effect that visualization strategies and choices have on different (expert and non-expert) audiences as well as decision-makers remains an under-researched area of interest. For this "PICO only" session, we not only invite submissions that demonstrate how to create effective and efficient visualizations for complex and large earth science data sets but also those that discuss possibilities and challenges we face in the communication and tailoring of such complex data to different users/ audiences. Submissions are encouraged from all geoscientific areas that either show best practices or state of the art in earth science data visualization or demonstrate efficient techniques that allow an intuitive interaction with large data sets. In addition, we would like to encourage studies that integrate thematic and methodological insights from fields such as for example risk communication more effectively into the visualization of complex data. Presentations will be given as PICO (Presenting Interactive COntent) on large interactive touch screens. This session is supported by ESiWACE2. ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 823988.

Co-organized by EOS7/CL5/GD10/GM2
Convener: Niklas Röber | Co-conveners: Michael Böttinger, Joseph Daron, Susanne Lorenz
| Attendance Tue, 05 May, 16:15–18:00 (CEST)

River monitoring remains a challenge for hydrologists and environmental agencies. The expansion of the human population, urbanisation, technological advancements and a changing global climate have put forward an ongoing water management agenda. River streamflow is one of the most crucial hydrological variables in terms of 'basin health' description (from an ecological point of view), and for flood risk management and modelling. However, despite significant efforts on river flow monitoring, long-term, spatially dense monitoring networks remain scarce, stressing the need for innovative solutions dealing with the twin challenges of a changing climate. Emerging innovative methods should be tested and benchmarked under different flow conditions to ensure accurate and consistent results and well-understood measurement uncertainties. Furthermore, these methods must be harmonised for promoting good practices and dissemination over the globe. In this context, this session focuses on:

1) The use of remote sensing approaches for hydrological and morphological monitoring;
2) Real-time acquisition of hydrological variables;
3) Innovative methodologies for measuring/modelling/estimating river stream flows;
4) Measuring the extremes of high and low flows associated with a changing climate;
5) Strategies to quantify and describe hydro-morphological evolution of rivers;
6) New methods to cope with data-scarce environments;
7) Inter-comparison of innovative and classical models and approaches;
8) Quantification of uncertainties; and,
9) Guidelines for hydro-morphological streamflow monitoring.

Contributions are welcome with emphasis on image-velocimetry or other velocity measurement techniques, wetted cross-section retrieval from digital surface models (e.g. computed with multi-media photogrammetry/structure-from-motion, or other bathymetric techniques), and quantification of stream flows and related uncertainties. Additionally, presentations of case studies using innovative sensors, Unmanned Aerial Systems (UASs) and Unmanned Surface Vehicles (USVs), airborne or satellite-based approaches, and traditional in-situ measurements are encouraged. This session is sponsored by the COST Action CA16219, Harmonisation of UAS techniques for agricultural and natural ecosystems monitoring (HARMONIOUS).
Note: This session is complemented by a field-based short-course, SC2.9, offering attendees the opportunity to experience some of these tools and techniques in a river environment.

Co-organized by GM2/NH1
Convener: Alonso PizarroECSECS | Co-conveners: Filippo BandiniECSECS, Silvano F. Dal SassoECSECS, Nick Everard, Alexandre Hauet, Ida Westerberg, Anette EltnerECSECS, Mark Randall
| Attendance Mon, 04 May, 10:45–12:30 (CEST)

This session is a result of a merge between GI1.3 and GM2.3:

Recent advances in image collection and topographic measurements are providing unprecedented insight into landscape and process characterization across the geosciences. In parallel, the increasing availability of digitised historical images, going back to the late 1800s, together with advances in digital photogrammetry software, have provided new opportunities for assessing and reconstructing long-term surface evolution from local to landscape scale. Such data can extend high-resolution time series into the pre-satellite era and offer exciting potential for distinguishing anthropogenic from natural causes of environmental change. For both historic and contemporary scenarios, augmenting classic techniques with digital imagery and ‘structure from motion’ (SfM) processing has democratized data access and offers a new measurement paradigm to geoscientists.

Such data are now available over spatial scales from millimetres to kilometres, and over durations of single events to lasting time series (e.g. from sub-second to century-duration time-lapse), allowing evaluation of event magnitude and frequency interrelationships. Despite a large volume of historical images available for reprocessing with modern methods, their full potential has not yet been widely exploited and uncertainties remain on the optimal types of information that can be extracted. Substantial opportunities are likely to be exposed by exploring such data resources with machine and deep learning approaches.

The session welcomes submissions from a broad range of geoscience disciplines such as geomorphology, cryosphere, volcanology, hydrology, bio-geosciences, and geology. Our goal is to create a diverse and interdisciplinary session to explore the potential of 2D and 3D image and topographic datasets for reconstructing and interpreting environments and processes, past and present. We aim to exchange experiences of modern photogrammetric and topographic measurement and modelling technologies, along with their associated data processing tools, to highlight their potentials, limitations, and challenges in different environments.

Public information:
We will have a video meeting on Friday evening starting from 6 pm CEST (UTC+2), in addition to the chat session on Friday morning, as scheduled. Authors will give talks in this video meeting, and there will be room for discussions, with the following agenda:

18:00 - 18:05 - Meeting setting and introduction to the session
18:05 - 18:17 - Amaury Dehecq, "Multidecadal elevation changes from spy satellite images: application to glaciers and landslides".
18:17 - 18:29 - Robert McNabb, "An open-source toolset for automated processing of historic spy photos: sPyMicMac".
18:29 - 18:41 - Penelope How, "PyTrx: a Python-based monoscopic terrestrial photogrammetry toolset for glaciology".
18.41 - 18:53 - Sebastian Flöry, "Development of a 3D Viewer for georeferencing and monoplotting of historical terrestrial images".
18.53 - 19:05 - Luca Carturan, "Use of WWI photos for quantitative reconstructions of glaciers along the Italian-Austrian front".
19:05 - 19:17 - Martino Terrone, "Coupling historical maps and Lidar data to recognize man-made landforms in urban areas".
19:17 - 19:25 - a little break
19:25 - 19:37 - William D. Harcourt. "Observing the cryosphere with millimetre wave radar: The case study of Rhône Glacier".
19.37 - 19:49 - Denis Feurer, "Time-SIFT: a frugal method for leveraging multi-temporal photogrammetric data without ancillary data"
19.49 - 20:01 - Helge Smebye, "Combined aerial and ground-based Structure-from-Motion modelling for a vertical rock wall face to estimate volume of failure"
20:01 - 20:13 - Sara Cucchiaro, "Terrestrial-Aerial-SfM and TLS data fusion for agricultural terrace surveys in complex topographic and land cover conditions".
20:13 - 20:25 - Andreas Mayr, "Close-range sensing and object based analysis of shallow landslides and erosion in grasslands".
20:25 - 20:37 - Kieran Wood, "UAS radiation hot-spot detection and refinement."
20:37 - break and discussion with an open end.

Join the video meeting using the following link:

For an optimal audio and video experience, we suggest that you join the meeting using the Zoom application. When following the meeting link, you will be asked to install it. Alternatively, you may join the meeting using the Chrome browser.

Co-organized by EOS9/CL2/CR2/GM2/HS13/NH6
Convener: Livia PiermatteiECSECS | Co-conveners: Penelope HowECSECS, Wilfried KarelECSECS, Anette EltnerECSECS, Andreas KaiserECSECS, Mike James, Mark SmithECSECS, Jack WilliamsECSECS
| Attendance Fri, 08 May, 08:30–10:15 (CEST)

The interactions between geo-environmental and anthropic processes are increasing due to the ever-growing population and its related side effects (e.g., urban sprawl, land degradation, natural resource and energy consumption, etc.). Natural hazards, land degradation and environmental pollution are three of the possible “interactions” between geosphere and anthroposphere. In this context, spatial and spatiotemporal data are of crucial importance for the identification, analysis and modelling of the processes of interest in Earth and Soil Sciences. The information content of such geo-environmental data requires advanced mathematical, statistical and geomorphometric methodologies in order to be fully exploited.

The session aims to explore the challenges and potentialities of quantitative spatial data analysis and modelling in the context of Earth and Soil Sciences, with a special focus on geo-environmental challenges. Studies implementing intuitive and applied mathematical/numerical approaches and highlighting their key potentialities and limitations are particularly sought after. A special attention is paid to spatial uncertainty evaluation and its possible reduction, and to alternative techniques of representation of spatial data (e.g., visualization, sonification, haptic devices, etc.).

In the session, two main topics will be covered (although the session is not limited to them!):
1) Analysis of sparse (fragmentary) spatial data for mapping purposes with evaluation of spatial uncertainty: geostatistics, machine learning, statistical learning, etc.
2) Analysis and representation of exhaustive spatial data at different scales and resolutions: geomorphometry, image analysis, machine learning, pattern recognition, etc.

Co-organized by ESSI2/GM2/SSS10
Convener: Caterina GozziECSECS | Co-conveners: Marco Cavalli, Sebastiano Trevisani
| Attendance Wed, 06 May, 10:45–12:30 (CEST)

Ground Penetrating Radar (GPR) is a safe, advanced, non-destructive and non-invasive imaging technique that can be effectively used for inspecting the subsurface as well as natural and man-made structures. During GPR surveys, a source is used to send high-frequency electromagnetic waves into the ground or structure under test; at the boundaries where the electromagnetic properties of media change, the electromagnetic waves may undergo transmission, reflection, refraction and diffraction; the radar sensors measure the amplitudes and travel times of signals returning to the surface.

This session aims at bringing together scientists, engineers, industrial delegates and end-users working in all GPR areas, ranging from fundamental electromagnetics to the numerous fields of applications. With this session, we wish to provide a supportive framework for (1) the delivery of critical updates on the ongoing research activities, (2) fruitful discussions and development of new ideas, (3) community-building through the identification of skill sets and collaboration opportunities, (4) vital exposure of early-career scientists to the GPR research community.

We have identified a series of topics of interest for this session, listed below.

1. Ground Penetrating Radar instrumentation
- Innovative GPR systems and antennas
- Equipment testing and calibration procedures

2. Ground Penetrating Radar methodology
- Survey planning and data acquisition strategies
- Methods and tools for data analysis, interpretation and visualization
- Data processing, electromagnetic modelling, imaging and inversion techniques
- Studying the relationship between GPR sensed quantities and physical properties of inspected subsurface/structures useful for application needs

3. Ground Penetrating Radar applications and case studies
- Earth sciences
- Civil and environmental engineering
- Archaeology and cultural heritage
- Management of water resources
- Humanitarian mine clearance
- Vital signs detection of trapped people in natural and manmade disasters
- Planetary exploration

4. Combined use of Ground Penetrating Radar and other geoscience instrumentation, in all applications fields

5. Communication and education initiatives and methods

-- Notes --
This session is organized by Members of TU1208 GPR Association (www.gpradar.eu/tu1208), a follow-up initiative of COST (European Cooperation in Science and Technology) Action TU1208 “Civil engineering applications of Ground Penetrating Radar”.

Co-organized by EMRP2/GM2/NH6
Convener: Aleksandar Ristic | Co-conveners: Alessandro FedeliECSECS, Lara Pajewski, Luis Rees-HughesECSECS, Milan VrtunskiECSECS
| Attendance Wed, 06 May, 10:45–12:30 (CEST)

Most of the processes studied by geoscientists are characterized by variations in both space and time. These spatio-temporal phenomena have been traditionally investigated using linear statistical approaches, as in the case of physically-based models and geostatistical models. Additionally, the rising attention toward machine learning, as well as the rapid growth of computational resources, opens new horizons in understanding, modelling and forecasting complex spatio-temporal systems through the use of stochastics non-linear models.
This session aims at exploring the new challenges and opportunities opened by the spread of data-driven statistical learning approaches in Earth and Soil Sciences. We invite cutting-edge contributions related to methods of spatio-temporal geostatistics or data mining on topics that include, but are not limited to:
- advances in spatio-temporal modeling using geostatistics and machine learning;
- uncertainty quantification and representation;
- innovative techniques of knowledge extraction based on clustering, pattern recognition and, more generally, data mining.
The main applications will be closely related to the research in environmental sciences and quantitative geography. A non-complete list of possible applications includes:
- natural and anthropogenic hazards (e.g. floods; landslides; earthquakes; wildfires; soil, water, and air pollution);
- interaction between geosphere and anthroposphere (e.g. land degradation; urban sprawl);
- socio-economic sciences, characterized by the spatial and temporal dimension of the data (e.g. census data; transport; commuter traffic).

Co-organized by GM2/HS12/NH8/NP4/SSS12
Convener: Federico AmatoECSECS | Co-conveners: Fabian GuignardECSECS, Luigi LombardoECSECS, Marj Tonini
| Attendance Fri, 08 May, 16:15–18:00 (CEST)

In recent years an increasing number of research projects focused on natural hazards (NH) and climate change impacts, providing a variety of information to end user or to scientists working on related topics.

The session aims at promoting new and innovative studies, experiences and models to improve risk management and communication about natural hazards to different end users.

End users such as decision and policy makers or the general public, need information to be easy and quickly interpretable, properly contextualized, and therefore specifically tailored to their needs. On the other hand, scientists coming from different disciplines related to natural hazards and climate change (e.g., economists, sociologists), need more complete dataset to be integrated in their analysis. By facilitating data access and evaluation, as well as promoting open access to create a level playing field for non-funded scientists, data can be more readily used for scientific discovery and societal benefits. However, the new scientific advancements are not only represented by big/comprehensive dataset, geo-information and earth-observation architectures and services or new IT communication technologies (location-based tools, games, virtual and augmented reality technologies, and so on), but also by methods in order to communicate risk uncertainty as well as associated spatio-temporal dynamic and involve stakeholders in risk management processes.

However, data and approaches are often fragmented across literature and among geospatial/natural hazard communities, with an evident lack of coherence. Furthermore, there is not a unique approach of communicating information to the different audiences. Rather, several interdisciplinary techniques and efforts can be applied in order to simplify access, evaluation, and exploration to data.

This session encourages critical reflection on natural risk mitigation and communication practices and provides an opportunity for geoscience communicators to share best methods and tools in this field. Contributions – especially from Early Career Scientists – are solicited that address these issues, and which have a clear objective and research methodology. Case studies, and other experiences are also welcome as long as they are rigorously presented and evaluated.

In cooperation with NhET (Natural hazard Early career scientists Team

Co-organized by GM2
Convener: Raffaele Albano | Co-conveners: Valeria Cigala, Emanuela Toto, Veronica Casartelli, Jonathan RizziECSECS
| Attendance Fri, 08 May, 10:45–12:30 (CEST)

Remote sensing and Earth Observations (EO) are used increasingly in the different phases of the risk management and in development cooperation, due to the challenges posed by contemporary issues such as climate change, and increasingly complex social interactions. The advent of new, more powerful sensors and more finely tuned detection algorithms provide the opportunity to assess and quantify natural hazards, their consequences, and vulnerable regions, more comprehensively than ever before.
Several agencies have now inserted permanently into their program the applications of EO data to risk management. During the preparedness and prevention phase, EO revealed, fundamental for hazard, vulnerability and risk mapping. EO data intervenes both in the emergency forecast and early emergency response, thanks to the potential of rapid mapping. EO data is also increasingly being used for mapping useful information for planning interventions in the recovery phase, and then providing the assessment and analysis of natural hazards, from small to large regions around the globe. In this framework, Committee on Earth Observation Satellites (CEOS) has been working from several years on disasters management related to natural hazards (e.g., volcanic, seismic, landslide and flooding ones), including pilots, demonstrators, recovery observatory concepts, Geohazard Supersites and Natural Laboratory (GSNL) initiatives and multi-hazard management projects.

The session is dedicated to multidisciplinary contributions focused on the demonstration of the benefit of the use of EO for natural hazard and risk management.
The research presented might focus on:
- Addressed value of EO data in hazard/risk forecasting models
- Innovative applications of EO data for rapid hazard, vulnerability and risk mapping, the post-disaster recovery phase, and in support of disaster risk reduction strategies
- Development of tools for assessment and validation of hazard/risk models

The use of different types of remote sensing (e.g. thermal, visual, radar, laser, and/or the fusion of these) is highly recommended, with an evaluation of their respective pros and cons focusing also on future opportunities (e.g. new sensors, new algorithms).
Early-stage researchers are strongly encouraged to present their research. Moreover, contributions from international cooperation, such as CEOS and GEO initiatives, are welcome.

Co-organized by GM2
Convener: Paolo Tarolli | Co-conveners: Kuo-Jen Chang, Maria Fabrizia Buongiorno, Michelle Parks, Antonio Montuori, Francesco Marchese
| Attendance Thu, 07 May, 14:00–18:00 (CEST)