Union-wide
Inter- and Transdisciplinary Sessions
Disciplinary sessions AS–GM
Disciplinary sessions GMPV–TS

Session programme

GD

GD – Geodynamics

Programme group chair: Paul Tackley

DM9
Division meeting for Geodynamics (GD)
Convener: Paul Tackley
Thu, 07 May, 12:45–13:45 (CEST)

GD1 – General Geodynamical Topics

GD1.1

Processes responsible for formation and development of the early Earth (> 2500Ma) are not
well understood and strongly debated, reflecting in part the poorly preserved, altered, and
incomplete nature of the geological record from this time.
In this session we encourage the presentation of new approaches and models for the development of Earth's early crust and mantle and their methods of interaction. We encourage contributions from the study of the preserved rock archive as well as geodynamic models of crustal and mantle dynamics so as to better understand the genesis and evolution of continental crust and the stabilization of cratons.
We invite abstracts from a large range of disciplines including geodynamics, geology, geochemistry, and petrology but also studies of early atmosphere, biosphere and early life relevant to this period of Earth history.

Share:
Co-organized by AS4/CL1/GMPV3/TS14, co-sponsored by EAG
Convener: Ria Fischer | Co-conveners: Peter A. Cawood, Nicholas Gardiner, Antoine Rozel, Jeroen van Hunen, Martin Whitehouse, Eleanor JenningsECSECS
Displays
| Attendance Mon, 04 May, 10:45–12:30 (CEST), Attendance Mon, 04 May, 14:00–15:45 (CEST)
TS14.2

Tectonic models represent hypothesised approximations of past geological events that best fit and explain a pre-defined collection of data points. Incorporation of geological observations with an understanding and consideration of geodynamic concepts, geological processes, and physical properties of geological materials ensures that empirical models are consistent with physics and mechanics, and that numerical models are consistent with field observations and petrological constraints. Integrating these constraints and concepts within a plate kinematic framework that considers the size, distribution and past and present motions of tectonic plates ensures that models are consistent with global plate tectonics. Incorporating this information with interpretations of the distribution of subducted slabs and plumes in the upper and lower mantle allows for construction of tectonic models that consider the global tectonic-mantle system. We welcome state-of-the-art, multi-disciplinary, and multi-scale studies that combine geological and geophysical constraints from the bedrock record with interpretations of deep mantle structure and/or plate kinematic datasets to investigate geodynamic events of past and present. These may include, but are not limited to studies of rifting and ocean spreading, subduction, orogeny and terrane accretion, and dynamic topography. We expect this session to include a diverse range of multi-disciplinary studies united by a common goal of understanding the geological evolution of our planet’s tectonic-mantle system.

Share:
Co-organized by GD1/SM2/SSP2
Convener: Andrew ParsonsECSECS | Co-conveners: Dennis Brown, Mathew DomeierECSECS, Stephen Johnston, Lucia Perez-Diaz
Displays
| Attendance Fri, 08 May, 10:45–12:30 (CEST)
GI1.2

The nature of science has changed: it has become more interconnected, collaborative, multidisciplinary, and data intensive. The main aim of this session, now in its third edition, is to create a common space for interdisciplinary scientific discussion where EGU-GA delegates involved in recent and ongoing COST (European Cooperation in Science and Technology)* Actions can share ideas and present the research activities carried out in their networks. The session represents an invaluable opportunity for different Actions and their members to identify possible synergies and establish new collaborations, find novel links between disciplines, and design innovative research approaches. So far, this session has hosted contributions stemming from 26 Actions, covering different areas of the geosciences (sky, earth and subsurface monitoring, terrestrial life and ecosystems, earth's changing climate and natural hazards, sustainable management of resources and urban development, environmental contaminants, and big data); we are looking forward to receiving new contributions this year.

Same as in past editions, part of this session will be dedicated to presenting and discussing activities carried out in further national and international scientific networks, associations, and collaborative projects.

Moreover, this session is of course open to everyone and abstracts authored by individual scientists or small research teams are most welcome, too. Actually, in 2018 and 2019 we received a very good number of such abstracts, submitted by researchers who wanted to disseminate the results of their studies in front of the multidisciplinary audience that characterizes this session, as an alternative to making a presentation in a thematic session. In fact, contributing to this session can be a productive way to broaden the perspective and find new partners for future interdisciplinary research ventures.

-- Notes --

* COST (www.cost.eu) is funded by the EU and enables researchers to set up their interdisciplinary and international scientific networks (the “Actions”). Academia, industry, public- and private-sector laboratories work together in the Actions, sharing knowledge, leveraging diversity, and pulling resources. Every Action has a main objective, defined goals and deliverables. This session is a follow-up initiative of COST Action TU1208 “Civil engineering applications of Ground Penetrating Radar” (www.gpradar.eu).

Share:
Co-organized by EOS9/AS4/CL5/GD1/NH5/NP8/SM1/SSP1/SSS12
Convener: Lara Pajewski | Co-conveners: Aleksandar Ristic, Patricia María Rodríguez GonzálezECSECS
Displays
| Attendance Thu, 07 May, 08:30–10:15 (CEST)
SSS8.10

The dynamics of the solid Earth and its surface are strongly affected by their interplays as well as biota and climate. These constant feedback systems operate at a variety of spatial and temporal scales that are regulated in a complex system of interactions. For instance, in the critical zone -the terrestrial surface environment ranging from the lower atmosphere to the solid parent material- interplays not only regulate manifold ecosystems and bio-geochemical cycles, but also shape the Earth’s surface at the interface between atmosphere and lithosphere, where soils develop. At much larger scales, plate tectonics and global geodynamics control the physiography, climate and hydrosphere, which in turn strongly affect the surface feedback processes via tectonic, biological, geochemical and hydrological processes. Ultimately, climate and tectonics are prominent macro-ecological drivers of landscape development. But even though the underlying geology and tectonic processes have long been recognized as driving parameters, this is much less so for biological processes. The driving force of microorganisms, plants and animals on the shape of land surfaces is still poorly understood.
Understanding the links between the solid Earth and the external spheres of the Earth has experienced a recent upswing due to advanced analytical techniques, but also thanks to fostered interactions between researchers from different disciplines. This session aims to bring together geoscientists, soil scientists, climatologists and biologists working at different spatial and temporal scales on the feedback interactions between geology, topography, soils, climate and biosphere at the surface of the Earth. The session covers a multitude of topics from the microbial to the geodynamics time and space scales.

Solicited speakers are:
Carina Hoorn, University of Amsterdam, The Netherlands
Alexia Stokes, French National Institute for Agricultural Research – INRA, France
Veerle Vanacker, University of Louvain, Belgium

Share:
Co-organized by BG1/CL4/GD1/GM4/SSP2
Convener: Steffen SeitzECSECS | Co-conveners: Laurent Husson, Annegret LarsenECSECS, Carsten W. Mueller, Pierre Sepulchre, Kirstin ÜbernickelECSECS
Displays
| Attendance Fri, 08 May, 08:30–10:15 (CEST)

GD2 – Mantle Dynamics, Structure and Evolution

GD2.1

Dynamic processes shape the Earth and other planets throughout their history. Geochemical observations place major constraints on dynamical processes that operated throughout Earth’s history while seismic imaging gives a snapshot of today’s mantle. Knowledge of physical properties and rheology from mineral physics is key to quantify processes in the mantle, and is undergoing constant advances (e.g. related to the iron spin transition or the thermal conductivity of the core). Magma ocean crystallisation established the initial conditions for subsequent long-term Earth evolution but is not well understood and typically not considered in models of long-term evolution. Modern-day plate tectonics may not have operated in the past; there is active debate about what tectonic mode(s) may have preceded it and their geological and geochemical signatures.

This session aims to provide a multidisciplinary view of the dynamics and evolution of the Earth, including its mantle, lithosphere, core and atmosphere. We welcome contributions that address aspects of this problem including geochemical observations and their interpretation, new mineral physics findings, geodynamical modelling, and seismological observations, on temporal scales ranging from the present day to billions of years, and on spatial scales ranging from microscopic mineralogical samples to global models. Contributions that take a multidisciplinary approach are particularly welcome.

Invited speaker: Matthew Jackson, Saskia Goes, Lorenzo Colli, Paula Koelemeijer

Share:
Co-organized by EMRP1/GMPV4/SM4, co-sponsored by EAG
Convener: Simone PiliaECSECS | Co-conveners: Laura Cobden, Andrea Giuliani, Hauke Marquardt, Maria Tsekhmistrenko, stephanie durand, Bernhard Schuberth, Martina UlvrovaECSECS
Displays
| Attendance Tue, 05 May, 08:30–12:30 (CEST)

GD3 – Core Dynamics

GD3.1

Our understanding of Earth's inner and outer core is progressing at a rapid pace thanks to cross-fertilization between a number of observational, theoretical and experimental disciplines.

Improved seismic observations continue to provide better images of the core and prompt refinements in structural and geodynamic models. Mineral physics provides constraints for dynamic, structural, and thermodynamic models. The heat budget of the core, paleomagnetic observations, and models promote the exploration of new dynamo mechanisms. Geomagnetic observations from both ground and satellite, along with magneto-hydrodynamic experiments, provide additional insight to our ever expanding view of Earth's core.

This session welcomes contributions from all disciplines, as well as interdisciplinary efforts, on attempts to proceed towards an integrated, self-consistent picture of core structure, dynamics and history, and to understand its overwhelming complexity.

Public information:
Visit us online. Presenters are showing their presentations online at 10:00 on zoom. Questions will run through the EGU chat later at 10:45 AM.

To join the private meeting:
Join by Zoom in browser or using the application
https://ethz.zoom.us/j/99798353748
Join by Skype for Business
https://ethz.zoom.us/skype/99798353748
Join by SIP
99798353748@zoomcrc.com

Share:
Co-organized by EMRP2
Convener: Sébastien Merkel | Co-conveners: Lennart de Groot, Arwen Deuss, Jerome Noir
Displays
| Attendance Fri, 08 May, 10:45–12:30 (CEST)

GD4 – Crust, Lithosphere and Asthenosphere: Observations and Models

GD4.1

Structure and dynamics of the lithosphere-asthenosphere system is one of the key questions for understanding geological processes. Constraining the styles, mechanisms and fabrics evolution in the crust and the upper mantle come from both direct and indirect observations with the use of variety of methods. Seismological studies focusing on anisotropy have successfully improved our knowledge of deformation patterns, acting both at present as well as in the past. When combined with tomographic models, velocity anisotropy can shed light on the geometry, structure, and dynamics of deformation in the lithosphere and the asthenosphere. Sophisticated geodynamic modelling and laboratory experiments enhance our understanding of flow patterns in the upper mantle and their effects on vertical motions of the crust and the lithosphere. Combining with inferences from seismic anisotropy, these methods have the potential to reveal mechanisms that create deformation-induced features such as shape preferred orientation (SPO) and lattice-preferred orientation (LPO), which created in the past or during the last deforming processes. Structural and kinematic characterization of deformation events by geometric and kinematic analyses infer the direction and magnitude of the tectonic forces involved in driving deformation within crust and upper mantle. Additionally, both physical analogue and numerical modelling foster our understanding of complex 3D-plate interaction on various timescales, controlled through the degree of plate coupling and the rheology of the lithosphere.
However, additional work is required to better integrate various experimental and modelling techniques, and to link them with multi-scale observations. The session aims at bringing together inferences from different disciplines that focus on structure and deformation of the lithosphere and the sub-lithospheric upper mantle as well as on the dynamics and nature of the lithosphere-asthenosphere system. The main goal is to demonstrate the potential of different methods, and to share ideas of how we can collaboratively study lithosphere structure, and how the present-day fabrics of the lithosphere relates to the contemporary deformation processes and ongoing dynamics within the asthenospheric mantle. Contributions from studies employing seismic anisotropy observation, geodynamical modelling (analogue and numerical), structural geology, and mineral and rock physics are welcome.

Invited Speakers:
Eric Debayle (Laboratoire de Geologie de Lyon-Terre, Planètes, Environnement, CNRS, France)
Christof Völksen (Bayerische Akademie der Wissenschaften, Germany)

Share:
Co-organized by SM4/TS14
Convener: Ehsan Qorbani ChegeniECSECS | Co-conveners: Irene Bianchi, Boris Kaus, Jaroslava Plomerova, Ernst Willingshofer
Displays
| Attendance Mon, 04 May, 08:30–10:15 (CEST)
GD4.2

International Lithosphere Program (ILP) has since 1980 been initiating major international, multidisciplinary research programmes to elucidate the nature, dynamics, origin and evolution of the lithosphere. ILP has taken initiative to more than 70 programmes within its four research themes: (1) Geoscience of Global Change, (2) Contemporary Dynamics and Deep Processes, (3) Continental Lithosphere and (4) Oceanic Lithosphere. Example programmes initiated by ILP include World Stress Map, Global Strain Rate Map, Global Seismic Hazard Assessment Map, Seismic Hazards and Megacities, Global Impact project, International Continental Drilling Program (ICDP), and a series of Global Geoscience Transects and programmes. Present programmes focus on integrated mapping of lithosphere physical parameters, lithosphere dynamics including the fate of subducted lithosphere and deformation of continental lithosphere, response of the lithosphere to surface processes including changes in climate and erosion/deposition dynamics, mineral resources, and seismic risk. ILP promotes high class science in combination with community services through the Evgueni Burov medal for mid-career scientists and the Flinn-Hart Award for outstanding early-career scientists, which are awarded during the UGU annual meeting. The activities of ILP seeks to achieve a balance between: "addressing societal needs" in regard to e.g. natural catastrophes, resource exploration and environmental protection; and "satisfying scientific curiosity" in regard to global and regional processes affecting the lithosphere. This symposium presents some of the ILP activities.
In particular, we invite, in particular multidisciplinary, contributions which focus on the structure and evolution of the continental crust and upper mantle and on the nature of mantle discontinuities. The latter include, but are not limited to, the mid-lithosphere discontinuity (MLD), the lithosphere-asthenosphere boundary (LAB), and the mantle transition zone, as imaged by various seismological techniques and interpreted within interdisciplinary approaches. Papers with focus on the structure of the crust and the nature of the Moho are also welcome. Methodologically, the contributions will include studies based on seismic, thermal, gravity, petrological, and/or electro-magnetic data interpretations.

Confirmed invited speakers: Sierd Cloetingh, Harsh Gupta, Sergei Lebedev and Taras Gerya.

Share:
Co-organized by SM4/TS11
Convener: Alexey Shulgin | Co-conveners: Hans Thybo, Leni Scheck-Wenderoth, Alex/ander Rudloff, Lev Vinnik
Displays
| Attendance Tue, 05 May, 14:00–15:45 (CEST)
GD4.3

The origin and evolution of the continental lithosphere is closely linked to changes in mantle dynamics through time, from its formation through melt depletion to multistage reworking and reorganisation related to interaction with melts formed both beneath and within it. Understanding this history is critical to constraining terrestrial dynamics, element cycles and metallogeny. We welcome contributions dealing with: (1) Reconstructions of the structure and composition of the lithospheric mantle, and the influence of plumes and subduction zones on root construction; (2) Interactions of plume- and subduction-derived melts and fluids with continental lithosphere, and the nature and development of metasomatic agents; (3) Source rocks, formation conditions (P-T-fO2) and evolution of mantle melts originating below or in the mantle lithosphere; (4) Deep source regions, melting processes and phase transformation in mantle plumes and their fluids; (5) Modes of melt migration and ascent, as constrained from numerical modelling and microstructures of natural mantle samples; (6) Role of mantle melts and fluids in the generation of hybrid and acid magmas.These topics can be illuminated using the geochemistry and fabric of mantle xenoliths and orogenic peridotites, mantle-derived melts and experimental simulations.

Share:
Co-organized by GMPV4, co-sponsored by EAG
Convener: Igor Ashchepkov | Co-conveners: Sonja Aulbach, Kate Kiseeva, Evgenii Sharkov
Displays
| Attendance Tue, 05 May, 08:30–12:30 (CEST)
GMPV9.5

The session deals with the documentation and modelling of the tectonic, deformation, and geodetic features of any type of volcanic area, on Earth and in the Solar System. The focus is on advancing our understanding on any type of deformation of active and non-active volcanoes, on the associated behaviours, and the implications for hazards. We welcome contributions based on results from fieldwork, remote-sensing studies, geodetic and geophysical measurements, analytical, analogue and numerical simulations, and laboratory studies of volcanic rocks. We also welcome multidisciplinary studies, especially those that integrate data collected at different scales (e.g. laboratory and field data).
Studies may be focused at the regional scale, investigating the tectonic setting responsible for and controlling volcanic activity, both along divergent and convergent plate boundaries, as well in intraplate settings. At a more local scale, all types of surface deformation in volcanic areas are of interest, such as elastic inflation and deflation, or anelastic processes, including caldera and flank collapses. Deeper, sub-volcanic deformation studies, concerning the emplacement of intrusions, as sills, dikes, and laccoliths, are most welcome.
We also particularly welcome geophysical data aimed at understanding magmatic processes during volcano unrest. These include geodetic studies obtained mainly through GPS and InSAR, as well as studies that model these data to image sources.


The session includes, but is not restricted to, the following topics:
• volcanism and regional tectonics;
• formation of magma chambers, laccoliths, and other intrusions;
• dyke and sill propagation, emplacement, and arrest;
• earthquakes and eruptions;
• caldera collapse, resurgence, and unrest;
• flank collapse;
• volcano deformation monitoring;
• volcano deformation and hazard mitigation;
• volcano unrest;
• mechanical properties of rocks in volcanic areas.

Share:
Co-organized by GD4/NH2/TS13
Convener: Valerio Acocella | Co-conveners: Agust Gudmundsson, Michael Heap, Sigurjon Jonsson, Virginie Pinel
Displays
| Attendance Fri, 08 May, 14:00–15:45 (CEST), Attendance Fri, 08 May, 16:15–18:00 (CEST)
GMPV7.1

From the Archean to the present, the dynamic evolution of the lithosphere is preserved in the metamorphic rock record. Each piece of evidence on mineral reactions, deformation and fluid-rock interaction helps to reconstruct the puzzle of lithospheric tectonics in all its complexity. Analytical and conceptual innovations in petrology, geochemistry, chronology, structural analysis and thermodynamic/thermomechanical modelling continue to improve our ability to read the metamorphic rock record and open new avenues for future development.

This session will highlight research in integrated metamorphic petrology and its application to solid earth behaviour in orogens, subduction zones and cratons throughout geological time. We welcome contributions across the breadth of this field—from petrology, (petro-)chronology, trace-element and isotope geochemistry to microstructures, modelling and geodynamics—with a focus on metamorphic and metasomatic processes that shape the lithosphere across a range of scales.

Invited speakers: Sarah Incel (University of Oslo), Richard Palin (University of Oxford) 

Public information:
We will have relatively few presentations in the 2nd slot, so we will transfer the last few of our 1st-slot presentations there (if authors are OK). This way we will have more time for further great discussions!

Share:
Co-organized by GD4/TS2
Convener: Matthijs Smit | Co-conveners: Daniela Rubatto, Tom Raimondo, Lucie Tajcmanova, Francesca PiccoliECSECS, José Alberto Padrón-Navarta, Carla TiraboschiECSECS
Displays
| Attendance Wed, 06 May, 14:00–18:00 (CEST)
TS11.3

Seismic data analysis and interpretation is the key tool enabling the unravelling of the geometry and evolution of subsurface geology.
In the last decades, significant improvements in the acquisition and processing techniques have been combined with a growing coverage of high-resolution and broadband frequency seismic data, including the public release of large volumes of 2D-3D hydrocarbon industry-sourced data. This led to shedding genuine new light on the subsurface geology of large portions of the Earth’s continental margins, and enabled improved quantitative rock property parametrization.
In addition, seismic reflection data have recently appealed to an ever-growing scientific audience, including exploration geoscientists, marine geologists, seismic geomorphologists, stratigraphers and structural geologists. This growing community has been collectively working towards the integrated application of seismic interpretation techniques, including seismic attribute analysis, for industrial purposes as well as for environmental and academic research studies.
In this fast-developing context, it is fundamental to share the knowledge between different research and application approaches. Therefore, the aim of this session is to provide the state-of-the-art and new prospective in seismic data analysis and quantitative subsurface characterization for structural geology and tectonics, but also for exploration seismology, marine geology, seismic geomorphology, stratigraphy, etc.
We thus invite submissions that aim to present new insights in the seismic interpretation of: i) shallow high-resolution seismic data; ii) deep industrial subsurface data (e.g., for hydrocarbon exploration); and iii) ultra-deep lithospheric seismic data. Studies integrating different approaches and disciplines are particularly welcomed.

Share:
Co-organized by GD4/SM4/SSP2
Convener: Vittorio Scisciani | Co-convener: Stefano PatrunoECSECS
Displays
| Attendance Fri, 08 May, 08:30–10:15 (CEST)
TS1.1

Temperature is a critical parameter in sedimentary basin evolution. Its distribution through time and space highly contributes to address complex geodynamic topics in different settings through realistic thermal history reconstructions. Conventional thermal modeling constraints derived from the inorganic and organic fraction of sedimentary rocks (vitrinite %Ro, apatite fission-tracks, fluid inclusions, etc.) can be affected by important limitations.
Moreover, fluids circulation in fault zones and sediments is often disregarded. In the last years new modelling approaches, innovative thermo-chronology proxies (carbonate clumped isotopes thermometry coupled with laser ablation U-Pb chronometry) as well as Raman and FT-IR on organic matter and biomarker studies have been widely used to overcome these pitfalls. Aim of the session is to provide a worldwide panorama on sedimentary basins whose geodynamic evolution has been constrained by merging conventional and brand-new calibration techniques and thermal modelling approaches. Contributions on different scale mechanisms, also dealing with uncertainties of fluids and technique validation are warmly welcome and would allow for discussion on technique development and presentation of new pilot data.

Share:
Co-organized by GD4/SSP1
Convener: Andrea SchitoECSECS | Co-conveners: Sveva Corrado, Marta Gasparrini, Dave Muirhead, Silvia Omodeo SalèECSECS
Displays
| Attendance Wed, 06 May, 10:45–12:30 (CEST)

GD5 – Convergent Zones: Subduction and Orogeny

GD5.1

Subduction drives plate tectonics, generating the major proportion of subaerial volcanism, releasing >90% seismic moment magnitude, forming continents, and recycling lithosphere. Therefore, it is the most important geodynamical phenomenon on Earth and the major driver of global geochemical cycles. Seismological data show a fascinating range in shapes of subducting slabs. Arc volcanism illustrates the complexity of geochemical and petrological phenomena associated with subduction.

Numerical and laboratory modelling studies have successfully built our understanding of many aspects of the geodynamics of subduction zones. Detailed geochemical studies, investigating compositional variation within and between volcanic arcs, provide further insights into systematic chemical processes at the slab surface and within the mantle wedge, providing constraints on thermal structures and material transport within subduction zones. However, with different technical and methodological approaches, model set-ups, inputs and material properties, and in some cases conflicting conclusions between chemical and physical models, a consistent picture of the controlling parameters of subduction-zone processes has so far not emerged.

This session aims to follow subducting lithosphere on its journey from the surface down into the Earth's mantle, and to understand the driving processes for deformation and magmatism in the over-riding plate. We aim to address topics such as: subduction initiation and dynamics; changes in mineral breakdown processes at the slab surface; the formation and migration of fluids and melts at the slab surface; primary melt generation in the wedge; subduction-related magmatism; controls on the position and width of the volcanic arc; subduction-induced seismicity; mantle wedge processes; the fate of subducted crust, sediments and volatiles; the importance of subducting seamounts, LIPs, and ridges; links between near-surface processes and slab dynamics and with regional tectonic evolution; slab delamination and break-off; the effect of subduction on mantle flow; and imaging subduction zone processes.

With this session, we aim to form an integrated picture of the subduction process, and invite contributions from a wide range of disciplines, such as geodynamics, modelling, geochemistry, petrology, volcanology and seismology, to discuss subduction zone dynamics at all scales from the surface to the lower mantle, or in applications to natural laboratories.

Share:
Co-organized by GMPV2/SM2/TS7
Convener: Oğuz H Göğüş | Co-conveners: Taras Gerya, Ágnes Király, Wim Spakman
Displays
| Attendance Wed, 06 May, 08:30–10:15 (CEST)
GD5.2

Subduction zones are arguably the most important geological features of our planet, where plates plunge into the deep, metamorphic reactions take place, large earthquakes happen and melting induces volcanism and creation of continental crust. None of these processes would be possible without the cycling of volatiles, and this session aims to explore their role in convergent margins. Questions to address include the following. Do Atlantic and Pacific subduction zones cycle volatiles in different ways? What dynamic or chemical roles are played by subducted fracture zones and plate bending faults? How do fluids and melts interact with the mantle wedge and overlying lithosphere? Why do some of the Earth’s largest mineral resources form in subduction settings? We aim to bring together geodynamicists, geochemists, petrologists, seismologists, mineral and rock physicists, and structural geologists to understand how plate hydration/slab dynamics/dehydration, and subsequent mantle wedge melting/fluid percolation, and ultimately melt segregation/accumulation lead to the diverse range of phenomena observed at convergence zones around the globe.

Includes Augustus Love Medal by Harro Schmeling
Invited Speaker: Nestor Cerpa (University of Montpellier, France)

Share:
Co-organized by GMPV2/SM6/TS7
Convener: Jeroen van Hunen | Co-conveners: Jenny Collier, Colin Macpherson, Andreas Rietbrock, Jamie Wilkinson
Displays
| Attendance Wed, 06 May, 14:00–15:45 (CEST)
TS7.9

Subduction zones are one of the key players in driving plate tectonics. They are also the locus of most mineral and rock transformations, mass/fluid transfer and seismicity. Understanding initiation, development and closure of subduction zones -including their evolution into collisional systems- is therefore a challenge facing Earth sciences. This session aims at covering the tectonic and metamorphic evolution from nascent to mature convergent systems in both space and time as well as studying the complex feedbacks of processes related to the thermo-mechanical history of subducted and exhumed rocks. This includes studies focusing on tectonic processes in oceanic and continental subduction setting over space and timescales (e.g. mechanical (de)coupling, rock accretion and exhumation...) in active and ancient convergent settings. We welcome contributions from a wide range of disciplines such as structural geology, tectonics, petrology, geophysics, experimental deformation and numerical modelling, with particular emphasis on the rock record.

Share:
Co-organized by GD5/GMPV7
Convener: Mathieu SoretECSECS | Co-conveners: Samuel Angiboust, Hugues Raimbourg, Zoe BradenECSECS, Vincent RocheECSECS, Jiří Konopásek
Displays
| Attendance Mon, 04 May, 14:00–18:00 (CEST)
TS7.10

Orogenic plateaus and their margins are integral parts of modern mountain ranges and offer unique opportunities to study the feedback between tectonics and climate through the Earth’s surface. Complex interactions and feedbacks occur among a wide range of parameters, including crustal and deep-seated deformation, basin growth, uplift, precipitation and erosion, landscape and biological change; and lead to (i) the growth, recycling, and destruction of the lithosphere; (ii) shifts in surface elevation; and (iii) high topography that can affect atmospheric circulation. These controlling factors result in plateau lateral growth and its characteristic morpho-climatic domains: humid, high-relief margins that contrast with (semi-)arid, low-relief plateau interiors.

This session aims at creating a discussion forum on the complex interactions and feedbacks among climatic, surficial and geodynamic processes that challenge the notion of a comprehensive mechanism for surface uplift and topographic growth in orogenic plateaus and their margins. To fuel the exchange, we welcome studies of orogenic plateaus worldwide at various scales, from the Earth’s mantle and crust to its surface and atmosphere. We particularly encourage contributions that aim at bridging temporal and spatial gaps between datasets using an interdisciplinary approach or novel techniques.

Share:
Co-organized by CL4/GD5/GM9/SSP1
Convener: David Fernández-Blanco | Co-conveners: Maud J.M. Meijers, Alexander RohrmannECSECS, Flora BajoletECSECS
Displays
| Attendance Wed, 06 May, 14:00–15:45 (CEST)
TS7.2

Foreland basins archive the evolution of mountain belts, and fold-thrust belts are the linking elements between orogens and their forelands. One of the major challenges for understanding the dynamics of mountain belts is untangling the different driving mechanisms that can be responsible for exhumation of mountain belts and foreland basin deformation. In particular, the signals of plate convergence (i.e. tectonic processes), deep seated (mantle-related) processes, or climate differ with respect to their timing and spatial extent. Ensuing foreland deformation is also influenced by heterogeneity of the deforming material. For instance, stratigraphic variations of the foreland basin fill or its substrate or inherited structures add complexity to the system.

In this session we invite contributions focusing on linking mantle and crustal tectonic processes with foreland basin dynamics. This includes addressing the interplay between plate boundary forces and of inherited structures, sediment production, transport and deposition (source to sink studies), and studies constraining timing of orogen processes at different scales (ranging from short term deformation rates to longer term rates based on cosmogenic nuclides or thermochronometry). We particularly invite contributions linking geophysical with geological data including 3-D models and addressing their respective uncertainties. We encourage the presentation of field-based studies as well as analog and numerical models highlighting the link between foreland basin deformation and mountain building processes including deformation of fold-thrust belts.

Share:
Co-organized by GD5/SSP2
Convener: Christoph von Hagke | Co-conveners: Pablo GranadoECSECS, Matthias Rosenau, Stefano Tavani
Displays
| Attendance Wed, 06 May, 14:00–18:00 (CEST)

GD6 – Plate Tectonics: Continents and Oceans

GD6.1

Geoscientists have long assumed that variations in the Earth’s topography are primarily due to variations within the lithosphere (density, thickness, flexural rigidity), and are compensated isostatically within the asthenosphere. But geodynamic considerations predict that mantle convection should cause long wavelength deflections of the Earth’s surface, with length scales > 500 km and vertical amplitudes as large as 1 to 2 km. The largest deflections seem to be associated with subduction zones and plumes. These long-wavelength deflects are called “dynamic topography” given that they are caused by dynamic pressures associated with convection.

Over the last decade, there has been increasing interest in resolving the long-term evolution of dynamic topography. Methods include global dynamic models; kinematic reconstruction of plate motions and plate boundaries; geomorphic and stratigraphic studies of basins, coastal terraces, and rivers; paleotopography studies using paleotemperature or precipitation isotopes, erosion studies using thermochronology; landform studies; and stratigraphic analysis at continental scales to map hiatus area. Geodynamic methods have expanded now to include adjoint inversion methods, which allow a more optimal integration between observations and theory. The simultaneous growth of observations and theoretical capabilities provides us with unprecedented opportunity to test the underlying assumptions of dynamic Earth models. This transdisciplinary session brings together observational and theoretical scientists to discuss the scope and format of established and nascent convection related observables, and welcomes contributions that highlight the noisy nature of observables while exploring methods to handle the impact of uncertainty in the geodynamic data assimilation framework.

Share:
Co-organized by TS14
Convener: Lorenzo ColliECSECS | Co-conveners: Prof. Dr. Ulrich Anton Glasmacher, Mark Brandon, Hans-Peter Bunge, Anke Friedrich, Francois Guillocheau, Kurt Stüwe, Massimiliano Zattin
Displays
| Attendance Fri, 08 May, 14:00–15:45 (CEST)
GD6.2

Since the Neoproterozoic breakup of the supercontinent Rodinia, continental fragments episodically rifted from their original location and systematically drifted towards more northerly positions, culminating in the Late Palaeozoic amalgamation of the supercontinent Pangaea. In this session we focus on the processes responsible for the transportation of terranes from Gondwana to the northern continental masses (Baltica, Laurentia, and later Laurussia) before, during and after the collision between Laurussia and Gondwana and the amalgamation of Pangaea. We welcome multi-disciplinary (tectonics, geodynamics, basin analysis, palaeomagnetism, palaeogeography, plate reconstruction, etc.) contributions dealing with i) the geodynamic evolution (rift-drift-accretion) of terranes such as Ganderia, Avalonia, Carolinia, Meguma, Armorica, Moesia, North China, South China, etc., ii) the fate of intervening oceans (Iapetus, Rheic, Palaeotethys, Neotethys, etc.) and iii) the geodynamic drivers of their respective evolutions.
Contribution to IGCP project No. 648: Supercontinent Cycles and Global Geodynamics.

Share:
Co-organized by EMRP3/TS14
Convener: Cecilio Quesada | Co-conveners: Brendan Murphy, Daniel Pastor Galán, Weihua YaoECSECS
Displays
| Attendance Fri, 08 May, 08:30–10:15 (CEST)
GD6.3

Continental rifting is a complex process spanning from the inception of extension to continental rupture or the formation of a failed rift. This session aims at combining new data, concepts and techniques elucidating the structure and dynamics of rifts and rifted margins. We invite submissions highlighting the time-dependent evolution of processes such as: initiation and growth of faults and ductile shear zones, tectonic and sedimentary history, magma migration, storage and volcanism, lithospheric necking and rift strength loss, influence of the pre-rift lithospheric structure, rift kinematics and plate motion, mantle flow and dynamic topography, as well as break-up and the transition to sea-floor spreading. We encourage contributions using multi-disciplinary and innovative methods from field geology, geochronology, geochemistry, petrology, seismology, geodesy, marine geophysics, plate reconstruction, or numerical or analogue modelling. Special emphasis will be given to presentations that provide an integrated picture by combining results from active rifts, passive margins, failed rift arms or by bridging the temporal and spatial scales associated with rifting.

Public information:
Dear participants of EGU session GD6.3 on rifting

We will start the discussion at 10:45 CET on Friday 8 May, and it will last until 12:30 CET, although the chat will remain active for 30 min more.

This is how we plan to carry on the session:

· Every contribution will get about 5 minutes of discussion
· The conveners will introduce the contribution (title, authors,..)
· The presenting authors will give a short summary/introduction (2-3 sentences) of their work and contact details for potential further discussion (@ authors, please prepare these in advance to ensure a smooth transition).
· Discussion with participants

If time permits, we will have a more general discussion after all contributions have been presented.

Here’s the order of the presentations:

· Tortelli et al.
· Welford & Geng
· Phillips & McCaffrey
· Pan et al.
· Glerum & Brune
· Braschi et al.
· Bauer et al.
· Pagli et al.
· La Rosa et al.
· Keir et al.
· King et al.
· Lymer et al.
· Yang & Welford
· Chenin et al.
· Forzese et al.
· Frasca et al.

Share:
Co-organized by GMPV2
Convener: Giacomo Corti | Co-conveners: Derek Keir, Carolina Pagli, Frank Zwaan
Displays
| Attendance Fri, 08 May, 10:45–12:30 (CEST)
TS6.4

The acquisition of new datasets at Continent-Ocean-Transition (COT) of rifted margins show significant variability, highlighting the diversity of parameters controlling the rift-to-drift transition during continental breakup. This session aims at gathering new observations, concepts, and techniques to investigate deformation mechanisms, dynamics of continental breakup, and generation of the first oceanic crust. We invite presentations focusing on topics from rifting up to incipient seafloor spreading, including studies discussing the structure and nature of COT, tectonic, magmatic, rheological and thermal evolution, melt initiation, sedimentary records, deformation mechanisms, and alteration processes. We encourage contributions using multidisciplinary and innovative methods including marine geosciences, seismology, sedimentology, field geology, geochemistry, thermochronology, plate reconstruction, and modelling. We welcome studies based on worldwide natural examples from active rifts, fossil and present-day rifted margins. Special emphasis will be given to presentations that integrate comparisons of tectonic and magmatic processes between continental and oceanic settings that could improve our understanding of continental breakup and mid-oceanic ridge initiation.

Share:
Co-organized by GD6/SSP2
Convener: Michael NirrengartenECSECS | Co-conveners: Julie TugendECSECS, J. Kim Welford, James NorcliffeECSECS, Craig Magee
Displays
| Attendance Tue, 05 May, 14:00–18:00 (CEST)
TS14.1

The pioneering seafloor mapping and visualization by Marie Tharp played a key role in the acceptance of the plate tectonic theory. Her physiographic maps, published with B. Heezen, covered the Earth’s oceans and revealed with astonishing accuracy the submarine landscape. She exposed the topography of a seafloor that turned out not to be flat, displaying instead features such as seamounts and volcanic chains, trenches, mid-ocean ridges, and transform faults. Marie Tharp co-authored the first papers describing the major fracture zones in the Central Atlantic (Chain, Romanche, Vema), and her work directly contributed to the recognition of the role of mid-ocean ridges in plate tectonics and oceanic accretion.

To honour Marie Tharp’s profound and lasting contribution to plate tectonics and marine goesciences, this session seeks contributions addressing plate tectonics in the oceans, based primarily on information from seafloor mapping, including regular or high resolution bathymetry, seafloor imagery (sonar or optical) at all scales, geophysical imaging of the seafloor, in addition to satellite altimetry, and in situ observations (robots or submersibles). Results of seafloor sampling, seismic imaging, seismicity studies or in-situ monitoring are also very welcome. Contributions may address the role of faults, seafloor volcanism, magmatism, and hydrothermal circulations, in the construction and evolution of the ocean crust and lithosphere from mid-ocean ridges and transform faults, to mid-plate domains and subductions. We seek contributions at all scales, from regional studies to a global scope, as that pioneered by Marie Tharp.

Share:
Co-organized by GD6
Convener: Mathilde Cannat | Co-conveners: Susanne Buiter, Javier Escartín, Philipp Brandl
Displays
| Attendance Thu, 07 May, 14:00–15:45 (CEST)
TS12.1

Plate tectonic processes and associated rates of deformation can be quantified using geomorphological and sedimentary evidence in actively deformed landscapes. A variety of geomorphic markers (e.g., topography and rivers, fluvial deposits, marine terraces) and sedimentary archives (e.g., syntectonic sedimentation, stratigraphic evidence) can be used to constrain rates and dates of tectonic deformation and its processes. Any of these and their combinations, when used in key natural laboratories at adequate time spans, can provide essential clues to understand the tectonic activity and large-scale geodynamic evolution of tectonic plates, and unravel the dynamic changes and tip-points in plate boundary conditions.

We invite contributions that aim to understand the dynamics and evolution of active plate boundaries and deforming plate interiors through geomorphic and/or sedimentary evidence. We welcome all types of studies regardless of their methodology, and especially interdisciplinary efforts, that use geomorphic and sedimentary records to quantify the rates of active deformation and tectonic events, at key sites and across various spatial and temporal scales.

Public information:
Welcome everyone to “Geomorphic and sedimentary records of active tectonics” [TS12.1]!
Thank you for attending!

We, the conveners, would like to thank all contributing authors, and in particular, everyone who uploaded a Display. We really appreciate it!

The life-chat will start at 10.45 and we will continue to discuss Displays until 12.30.
Thereafter, the chat will remain open for discussion if you want.

----------------------------------------------------------
Schedule for the Live-Chat (Thursday 7th of May)

10:45-10:50 Introduction
10:50-10:57 Ed Rhodes
10:57-11:04 Rajeeb Lochan Mishra
11:04-11:11 Paul Zemann
11:11-11:18 Bernhard Salcher
11:18-11:25 Oswald Malcles
11:25-11:32 Tarik Kernif
11:32-11:39 Haralambos Kranis
11:39-11:46 Roland Freisleben
11:46-11:53 Hao Liang
11:53-12:00 Ping Huang
12:00-12:07 Gerben de Jager
12:07-12:14 Debora Duarte
12:14-12:21 Shao-I Kao
12:21-12:30 Final Discussion

----------------------------------------------------------
We would like to organize the session as follows:

- A ca. 7 min time slot will be allocated to each of the 13 contributors that have uploaded a Display This should not only allow for some discussion of the Displays but also leave 10 minutes at the end of the session for the discussion of remaining questions.

- The conveners introduce the contribution

- The presenting author shortly introduces the Display (@authors, please prepare these in advance to ensure a smooth transition and include your email address!)

- Discussion with participants starts
For questions, please use @name to address the correct person.

Share:
Co-organized by GD6/GM9/SSP1
Convener: Gino de Gelder | Co-conveners: Lucilla Benedetti, David Fernández-Blanco, Martine Simoes
Displays
| Attendance Thu, 07 May, 10:45–12:30 (CEST)

GD7 – Geodynamics of Specific Regions

GD7.1

The Arctic realm hosts vast extended continental shelves bordering old land masses, one of the largest submarine Large Igneous Provinces (LIPs) -the Alpha-Mendeleev Ridge - of Mesozoic age, and the slowest mid-ocean spreading ridge (the Gakkel Ridge) on the globe. Extreme variations in the evolution of landscapes and geology reflect the tug-of-war between the formation of new oceans, like the North Atlantic, and the destruction of older oceans: the South Anyui, Angayucham and North Pacific, which were accompanied by rifting, collision, uplift and subsidence. The causal relationships between the deep-mantle and surface processes in the Circum-Arcic region remain unclear. Geoscientific information on the relationship between the onshore geology and offshore ridges and basins in combination with variations in the mantle is the key for any deeper understanding of the entire Arctic Ocean.
This session provides a forum for discussions of a variety of problems linked to the Circum-Arctic geodynamics and aims to bring together a diversity of sub-disciplines including plate tectonics, mantle tomography, seismology, geodynamic modelling, igneous and structural geology, geophysical imaging, sedimentology, and geochemistry. Particularly encouraged are papers that address lithospheric-mantle interactions in the North Atlantic, the Arctic and North Pacific regions, mantle dynamics and vertical and horizontal motion of crustal blocks and consequences for paleogeography. As geologic and tectonic models are inherently tied with changes in the oceanographic and climatic development of the Arctic, we also invite studies that focus on the interplay between these processes and across timescales. Lastly, we would like to invite contributions from studies concerning the implications of how the Arctic’s geography and geology are portrayed by modern data and issues related to jurisdiction and sovereign rights with particular focus on the UN Convention on the Law of the Sea.

Share:
Co-organized by CL4/GMPV11/SM4/TS14
Convener: Grace E. ShephardECSECS | Co-conveners: Frances DeeganECSECS, Karolina Kośmińska, Rebekka Steffen
Displays
| Attendance Mon, 04 May, 14:00–15:45 (CEST)
GD7.2

Interdisciplinary study of the Northeast Atlantic region offers an extraordinary opportunity to advance understanding of interactions and co-dependencies between the solid Earth, ocean, atmosphere, cryosphere and climate. Understanding these issues are of critical importance to Europe and Scandinavia, and they are of global relevance. The unprecedented surge in exploration of the Northeast Atlantic Realm that has unfolded in recent years has delivered major leaps forward in understanding its geological structure, dynamics and development, economic resources and volcanism. Examples include the complexity of the conjugate volcanic rifted margins, contact metamorphism of carbon-rich shales by sill intrusions, producing thermogenic methane, the discovery of widespread continental crust in the ocean, the critical role of the Greenland-Iceland-Faroe bathymetric ridge in influencing ocean circulation between the Arctic and the Atlantic south of Iceland, mapping of gas hydrates and the study of crustal structure beneath the Greenland icecap. Throughout the Cenozoic these factors have influenced ocean and atmosphere composition and circulation, climate change, and the growth, wastage and transport of ice. Detailed understanding of the interdependencies of these phenomena in the past and through time is arguably of critical importance to understanding the current, rapid changes in the natural environment. The goal of this special session is to bring together diverse contributions drawing on all the above disciplines in order to identify potentially fertile areas for broad, cross-disciplinary study of the Northeast Atlantic Realm moving forward.

Share:
Co-organized by CL1/OS1/TS6
Convener: Laurent Geoffroy | Co-conveners: G.R. Foulger, Dieter Franke, Catherine Kissel
Displays
| Attendance Wed, 06 May, 10:45–12:30 (CEST)
TS7.6

The Alps have been intensively studied by geologists for more than a century, providing a unique natural laboratory to deepen our understanding of orogenic processes and their relationship to mantle dynamics. Although most concepts that underlie current studies of mountain belts and convergence dynamics were born in the Alps, the belt is now being examined with renewed vigour in the AlpArray project. This project involves a large number of European institutions, with efforts focused on the AlpArray Seismic Network to provide homogeneous seismological coverage of the greater Alpine area at unprecedented aperture and station density, both on land and sea. New data is being recorded in a multidisciplinary research effort, and other projects are being planned in the immediate and mid-term future.
Within this context, we invite contributions from the Earth Science community that highlight new results in AlpArray and that identify and solve key open questions of the present and past structure and dynamics of the Alps and neighbouring orogens. Both disciplinary and multi-disciplinary contributions are welcome from geophysical imaging, (seismo)tectonics, structural geology, gravimetry, geodesy, geodynamics, petrology, geochronology and other allied fields, combined with various modelling approaches. Scales of interest range from crustal to upper mantle, in the Alps and neighbouring mountain belts such as the Apennines, the Carpathians and the Dinarides.

Share:
Co-organized by GD7/SM4
Convener: Anne Paul | Co-conveners: Mark R. Handy, György Hetényi, Marco Giovanni Malusa', Irene Molinari
Displays
| Attendance Thu, 07 May, 10:45–12:30 (CEST), Attendance Thu, 07 May, 14:00–15:45 (CEST)
TS7.4

The Alpine-Himalayan orogenic belt is one of the largest and most prominent suture zones on Earth. The belt ranges from the Mediterranean in the west to Indonesia in the east. It results from the subduction and closing of different branches of the Tethyan Oceanic Realm and the subsequent collision of the African, Arabian and Indian continental plates with Eurasia. Its long-lasting geological record of complex interactions among major and smaller plates, featuring the presence of subduction zones at different evolutionary stages, has progressively grown as a comprehensive test site to investigate fundamental plate tectonics and geodynamic processes with multi-disciplinary studies. Advances in a variety of geophysical and geological fields provide a rich and growing set of constraints on the crust-lithosphere and mantle structure, as well as tectonics and geodynamic evolution of the entire mountain belt

We welcome contributions presenting new insights and observations derived from different perspectives like geology (stratigraphy, petrology, geochronology, geochemistry, tectonics and geomorphology), geophysics (seismicity, seismic imaging, seismic anisotropy, gravity), geodesy (GPS, InSAR), modelling (numerical and analogue), risk assessment (earthquake, volcanism), as well as from multi-disciplinary studies.

Keynote presentation by Boris Kaus (University of Mainz)

Public information:
The discussion during the chat sessions will follow an order based on location (from East to West), and divide the abstracts such that in the first block we will go from the Himalaya region to Turkey-Anatolia-Cyprus and the East Mediterranean Basin, and in the second block, we will cover the Mediterranean from the Western side of the Black Sea (i.e. Bulgaria) to the Westernmost Mediterranean. The preliminary order (hoping that authors upload their display) is:
14:00-15:45
1· Jatupohnkhongchai et al.
2· Bai et al.
3· Chen et al.

4· Knight et al.
5· Stoner et al.
6· Wei Li et al.

7· Barbero et al.
8 Lom et al.
9· Simmonds et al.
10· Mahleqa Rezaei et al.

11· Sağlam et al.
12· Mueller et al.
13· Gürer et al.
14· Nirrengarten et al.

BREAK (30 minutes)

16:15-18:00
1· de Leeuw et al.
2· Balkanska and Georgiev (?)

3· Faucher et al.
4· Molnár et al.
5· Stanković et al.

6· Schneider and Balen
7· Chang et al.
8· Kaus et al.
9· El-Sharkawy et al.
10· Agostini et al.

11· Gimeno et al.
12· de la Peña et al.
13· Negredo et al.
14· Jiménez-Munt et al.
15· Kumar et al.

Share:
Co-organized by GD7/GMPV11/SM2
Convener: Ágnes Király | Co-conveners: Derya GürerECSECS, Marc Hässig, Claudia Piromallo
Displays
| Attendance Fri, 08 May, 14:00–15:45 (CEST), Attendance Fri, 08 May, 16:15–18:00 (CEST)
SM2.11

The Mediterranean region spanning from the Betic Cordillera and the Alboran Sea to the Levantine and Dead Seas is the most tectonically active region of Europe. Over the last decades several moderate to large magnitude earthquakes affected the Mediterranean regions often causing substantial economical and sometimes human losses. The scientific community is developing a better understanding of the crustal processes that may drive seismic sequences thanks to denser and higher quality geophysical networks, multidisciplinary experiments and rapid field deployments in the aftermath of a mainshock. This allowed increasingly larger and more accurate datasets that can be exploited to improve the knowledge of crustal seismogenic processes. Over the years, this effort lead to the identification of seismic gaps, the production of seismic hazard maps and, not least, the characterization of seismogenic structures. Yet, each seismic sequence seems to be strongly affected by the local tectonics and by the interplay of crustal processes.

In this session we welcome contributions aimed at a better understanding of recent seismic sequences that may help improving our still fragmentary knowledge of earthquake nucleation processes. We are interested in new results from earthquakes that occurred both in front-arc and back-arc regions along the convergence zones between Africa and Europe, in the Apennines and other Mediterranean regions and their comparison with major historical earthquakes. This includes geophysical experiments, analyses of recent seismic sequences, and multidisciplinary studies focusing on the identification, characterisation and monitoring of seismic gaps. We also encourage analyses of fluid-driven seismic sequences and offshore campaigns characterizing key regional faults.

Share:
Co-organized by GD7/TS5
Convener: Matteo Lupi | Co-conveners: Athanassios Ganas, Eulàlia Gràcia Mont, Marc-Andre Gutscher, Fabio Villani
Displays
| Attendance Mon, 04 May, 14:00–15:45 (CEST)
TS5.5

The broad scale tectonics of the Eastern Mediterranean are dominated by the interaction of the Nubian and Arabian plates with the Eurasian plate. This complex tectonic frame exhibit almost all type of plate boundary conditions such as continental convergence and extension, oceanic subduction, and continental transform. The evolution and present deformation are constrained by diverse geological, geophysical, and geodetic observations and have been explained by different hypotheses, such as (a) tectonic escape system caused by the post-collisional convergence of Eurasian and Arabian plates creating forces at its boundaries with gravitational potential differences of the Anatolian high plateau (b) asthenospheric flow dragging the circular flow of lithosphere from the Levant to Anatolia in the east and the Aegean in the west, (c) slab pull of the Hellenic subduction, (d) mantle upwelling underneath Afar and with the large-scale flow associated with a whole mantle, Tethyan convection cell, (e) or combinations of these mechanisms for the Eastern Mediterranean. Naturally, this tectonic setting generates frequent earthquakes with large magnitudes (M > 7), forming a natural laboratory on understanding the crustal deformation, and crust-mantle interactions for various disciplines of active tectonics.
Multi-disciplinary studies, especially within the last three decades, have made significant contributions to our understanding of the processes on the crustal deformation, and interaction of the mantle with the crustal processes of this region. With this session, we aim to bring together the recent findings of these studies, thus we welcome/invite contributions from a wide range of disciplines including, but not limited to, neotectonics, seismology, tectonic geodesy (e.g. GNSS, InSAR), paleoseismology, tectonic geomorphology, remote sensing, structural geology and geodynamic modelling, which geographically cover the Eastern Mediterranean region, including Anatolia-Aegean Block, Caucasus, Iran, Middle East and Greece.

Invited talks:
- Jonathan Weiss - Measuring Anatolian plate velocity and strain with InSAR: Implications for fault-locking, seismic hazard, and crustal dynamics.
- Pierre Henry - Contrasting seismogenic behaviors on the North Anatolian Fault in the Sea of Marmara

Share:
Co-organized by GD7/NH4/SM2
Convener: Cengiz Zabcı | Co-conveners: Michael Floyd, A. Ozgun Konca, Onno Oncken, Philippe Vernant
Displays
| Attendance Thu, 07 May, 14:00–18:00 (CEST)
TS6.1

The separation of the African and Arabian plates is responsible for the opening of the Red Sea and Gulf of Aden that meet the East African Rift at the Afar triple junction. Moreover, the strike-slip movement between the African and the Arabian plates is accommodated in the northernmost part of the rift system by the Dead Sea fault and its marine extension in the Gulf of Aqaba. High volcanic and seismic activity in and around the three arms of the divergence highlights some of the key aspects of this opening system.

This complex geodynamic system is currently investigated by multiple geoscientific approaches including e.g., tectonics, volcanology, stratigraphy, geodynamics, geodesy as well as active and passive geophysical methods.

In this session, we welcome contributions that are based on (but not limited to) such methods and investigate the basins of the Gulf of Suez, Gulf of Aqaba, Red Sea, Gulf of Aden, Afar depression and their surrounding regions, from the mantle to the crust.

Share:
Co-organized by GD7/GMPV11/SM4
Convener: Laura ParisiECSECS | Co-conveners: Nico Augustin, Joël Ruch, Daniele TrippaneraECSECS
Displays
| Attendance Wed, 06 May, 08:30–10:15 (CEST)
TS6.2

The West Pacific regime is dominated by a convergent plate setting, but develops two thirds of the world’s marginal basins which have different histories and causes. Some are built on continental crust and some formed by seafloor spreading. Some began to form in Mesozoic time and others began in Cenozoic time. Many are filled with sediments and volcanics and some of these contain hydrocarbon deposits. Some are no longer actively extending but others are still tectonically active and pose hazards to nearby coastal communities. The purpose of this session is to present our modern understanding of these marginal basins, how they formed, how they subsided, how they were filled, how they died, and the economic benefits and potential hazards they present.
In this session, we welcome all contributions that deal with marginal basins in the West Pacific and/or try to answer to the questions related to the evolution of marginal basins in convergent plate settings. We particularly encourage multi-disciplinary studies that address the issues of inheritance on the rifting process, the discuss modes of breakup, the role of magmatism in lithospheric breakup and the contribution of sedimentation and source to sink processes in marginal margins.

Public information:
(1) For attenders, you are encrouraged to download and read through the related present materials before the session, and prepare your comments and questions (in text) in advance to avoid delays;
(2) For presenters, please give a short summary of your research, and be prepared to answer questions. It will be better to have some of the answers on your conclusions and methods typed in advance.
(3) Provide your contacts to audience, thus the discussion could continue after the session.

Share:
Co-organized by GD7
Convener: Weiwei Ding | Co-conveners: Dieter Franke, Jiabiao Li, Gianreto Manatschal, Zhen SUN
Displays
| Attendance Tue, 05 May, 08:30–10:15 (CEST)
SSP2.13

Interactions between tectonics, climate and biotic evolution are ideally expressed in Asian orogenies. The ongoing surge of international research on Asian regions enables to better constrain paleoenvironmental changes and biotic evolutions as well as their potential driving mechanisms such as global climate, the India-Asia collision and the tectonic growth of the Himalayan-Tibetan and other Asian orogens. Together these efforts allow for a comprehensive paleogeographic and paleoenvironmental reconstructions that enable to constrain climate modelling experiments which permit validation of hypotheses on potential interactions.
The goal of this session is to assemble research efforts that constrain Asian tectonic, climate (monsoons, westerlies, aridification), land-sea distribution, surface processes or paleobiogeographic evolution at various timescales. We invite contributions from any discipline aiming for this goal including broadly integrated stratigraphy, tectonic, biogeology, climate modelling, geodynamic, oceanography, geochemistry or petrology.

Share:
Co-organized by CL1/EMRP3/GD7/TS7
Convener: Guillaume Dupont-Nivet | Co-conveners: Frederic Fluteau, Carina Hoorn, Niels MeijerECSECS, Douwe J. J. van Hinsbergen
Displays
| Attendance Fri, 08 May, 14:00–15:45 (CEST)

GD8 – Multiscale Rheology, Physical Properties and Geodynamic Processes

GD8.1

The goal of this session is to reconcile short-time/small-scale and long-time/large-scale observations, including geodynamic processes such as subduction, collision, rifting or mantle lithosphere interactions. Despite the remarkable advances in experimental rock mechanics, the implications of rock-mechanics data for large temporal and spatial scale tectonic processes are still not straightforward, since the latter are strongly controlled by local lithological stratification of the lithosphere, its thermal structure, fluid content, tectonic heritage, metamorphic reactions and deformation rates.

Mineral reactions have mechanical effects that may result in the development of pressure variations and thus are critical for interpreting microstructural and mineral composition observations. Such effects may fundamentally influence element transport properties and rheological behavior.
Here, we encourage presentations focused on the interplay between metamorphic processes and deformation on all scales, on the rheological behavior of crustal and mantle rocks and time scales of metamorphic reactions in order to discuss
(1) how and when up to GPa-level differential stress and pressure variations can be built and maintained at geological timescales and modelling of such systems,
(2) deviations from lithostatic pressure during metamorphism: fact or fiction?,
(3) the impact of deviations from lithostatic pressure on geodynamic reconstructions.
(4) the effect of porous fluid and partial melting on the long-term strength.
We therefore invite the researchers from different domains (rock mechanics, petrographic observations, geodynamic and thermo-mechanical modelling) to share their views on the way forward for improving our knowledge of the long-term rheology and chemo-thermo-mechanical behavior of the lithosphere and mantle.

Share:
Co-organized by EMRP1/GMPV7/TS3
Convener: Yury Podladchikov | Co-conveners: Shun-ichiro Karato, Leni Scheck-Wenderoth, Lucie Tajcmanova, Leif TokleECSECS, Ake Fagereng, Amicia LeeECSECS, Luca Menegon
Displays
| Attendance Thu, 07 May, 10:45–12:30 (CEST), Attendance Thu, 07 May, 14:00–15:45 (CEST)
GD8.2

Many regions of the Earth, from crust to core, exhibit anisotropic fabrics which can reveal much about geodynamic processes in the subsurface. These fabrics can exist at a variety of scales, from crystallographic orientations to regional structure alignments. In the past few decades, a tremendous body of multidisciplinary research has been dedicated to characterizing anisotropy in the solid Earth and understanding its geodynamical implications. This has included work in fields such as: (1) geophysics, to make in situ observations and construct models of anisotropic properties at a range of depths; (2) mineral physics, to explain the cause of some of these observations; and (3) numerical modelling, to relate the inferred fabrics to regional stress and flow regimes and, thus, geodynamic processes in the Earth. The study of anisotropy in the Solid Earth encompasses topics so diverse that it often appears fragmented according to regions of interest, e.g., the upper or lower crust, oceanic lithosphere, continental lithosphere, cratons, subduction zones, D'', or the inner core. The aim of this session is to bring together scientists working on different aspects of anisotropy to provide a comprehensive overview of the field. We encourage contributions from all disciplines of the earth sciences (including mineral physics, seismology, magnetotellurics, geodynamic modelling) focused on anisotropy at all scales and depths within the Earth.

Share:
Co-organized by EMRP1/SM4
Convener: Manuele Faccenda | Co-conveners: Sébastien Chevrot, Tuna Eken, Miriam Christina Reiss
Displays
| Attendance Thu, 07 May, 08:30–10:15 (CEST)
TS2.3

This session concerns about the interrelation between microstructures and geologic processes. One the one hand, microstructures (fabrics, textures, grain sizes, shapes, etc) can be used to identify or quantify, e.g., deformation, metamorphic, magmatic or diagenetic phenomena (to name a few). On the other hand, physical properties of geo-materials are governed by their microstructure, hence predicting a materials property is greatly enhanced by understanding of how certain processes result in a specific microstructure.

All these mechanisms are likely to cause modification on the rheological, elastic, and thermal properties of these rocks, providing key information on the evolution of the lithosphere.
In this session, we invite contributions from field observations, laboratory experiments, and numerical modelling that relate microstructures to rheology, strain localization or mineral reactions, that use microstructures to tackle general problems in structural, metamorphic, magmatic or economic geology as well as studies quantifying physical and mechanical properties of rocks based on their microstructural and textural properties using well established or novel methods.

Share:
Co-organized by EMRP1/GD8/GMPV1
Convener: Rüdiger Kilian | Co-conveners: Sina MartiECSECS, Luiz F. G. Morales, Michael Stipp
Displays
| Attendance Wed, 06 May, 14:00–18:00 (CEST)

GD9 – Localization, Shear Zones and Faults

GD9.1

In the Plate Tectonics theory, Earth’s lithosphere is described as a rigid outermost shell deforming over long timescales along narrow boundaries, that play a central role in our Planet’s thermal and dynamic evolution. Understanding the modalities of strain localization in the lithosphere and its failure are therefore essential to describe the formation and evolution of plate boundaries, fault zones and other mechanical heterogeneities. This requires knowledge of localization processes at both micro- and macro-physical scales, the analysis of their dynamics over various time scales, and involves complementary inputs from geological and seismic observations, laboratory experiments and numerical and analog modeling.
We welcome multidisciplinary contributions that will collaboratively help to build a unified view on the dynamical evolution of lithospheric localization processes. Example topics include but are certainly not limited to the study of variations in lithospheric properties deduced from mineralogical, petrological or geological data, and of the implication of lithospheric anomalies on the dynamics of fault zones and the formation and evolution of plate margins in nature or in models.

Share:
Co-organized by TS2
Convener: Lukas FuchsECSECS | Co-conveners: Maelis ArnouldECSECS, Whitney Behr, Eline Le Breton
Displays
| Attendance Fri, 08 May, 08:30–10:15 (CEST)
TS5.4

Tectonic faults accommodate plate motion through various styles of seismic and aseismic slip spanning a wide range of spatiotemporal scales. Understanding the mechanics and interplay between seismic rupture and aseismic slip is central to seismotectonics as it determines the seismic potential of faults. In particular, unraveling the underlying physics controlling these styles of deformation bears a great deal in earthquakes hazards mitigation especially in highly urbanized regions.
In partnership with the AGU Tectonophysics section, we invite contributions from observational, experimental, geological and theoretical studies that explore the diversity and interplay among seismic and aseismic slip phenomena in various tectonic settings, including the following questions: (1) How does the nature of creeping faults change with the style of faulting, loading rate, and other factors? (2) Are different slip behaviors well separated in space, or can the same fault areas experience different failure modes? (3) Is there a systematic spatial or temporal relation between different types of slip?

Invited speakers:
- Chris Marone, Penn State. "Fault healing plays a key role in creating the spectrum of tectonic faulting styles from seismic to aseismic slip "

- Adriano Gualandi, Caltech. "Towards Slow Earthquakes Forecasting"

Share:
Co-organized by GD9/SM2, co-sponsored by AGU-Tectonophysics
Convener: Jorge Jara | Co-conveners: Blandine GardonioECSECS, Luca Dal Zilio, Allie HutchisonECSECS, Valere Lambert, Sylvain Michel, Harsha S. Bhat
Displays
| Attendance Tue, 05 May, 14:00–15:45 (CEST)
TS5.2

The largest earthquakes globally occur along plate boundaries, producing intense shaking and associated secondary hazards over broad regions. In the past few years, there have been significant improvements in the quantity and quality of geodetic, seismological, and geological observations of the slow accumulation and rapid release of strain at these plate boundaries. At the same time, improvements in modeling techniques are providing new insights into the geodynamic processes controlling the occurrence of major earthquakes. With these advances, it is now becoming possible to address outstanding issues about both seismic and aseismic deformation at plate boundaries, such as time-variable locking and unlocking of the plate interface, the extent and role of slow slip events, the links between earthquake cycles and permanent deformation, and the behavior of complete cycles revealed by paleo-seismic and paleo-geodetic observations.

We invite contributions that investigate the spectrum of deformation occurring throughout the earthquake cycle at plate boundaries, from aseismic to seismic and across a variety of spatial and temporal scales. Submissions that utilize improved remote and field observational capabilities, developments in data analysis, or innovations in analog and numerical modeling to advance the understanding of the underlying physical processes are encouraged.

Public information:
----------

We will begin our session by allowing 5-10 minutes for participants to look through the displays and prepare some discussion points. After this, we will go through all of the presenting author, and have each author briefly introduce their research. Audience participants will then have a few minutes to ask questions and make comments. Depending on the number of displays, we will be more or less strict on timing, but we are aiming for 5-10 minutes per author. Finally, after all authors have presented, we will turn the comments to open discussion. Talk to you soon!

Share:
Co-organized by GD9/NH4/SM4
Convener: Matthew Herman | Co-conveners: Ylona van DintherECSECS, Marcos Moreno, Luca Dal Zilio
Displays
| Attendance Tue, 05 May, 08:30–10:15 (CEST)

GD10 – Modelling, Data Collection and Inversion, Visualization, Machine Learning

GD10.1

Geological and geophysical data sets are in essence the output of physical processes governing the Earth’s evolution. Such data sets are widely varied and range from the internal structure of the Earth (e.g. seismic tomography), plate kinematics (e.g. GPS), composition of geomaterials (e.g. petrography), estimation of physical conditions and dating of key geological events (e.g. thermobarometry), thermal state of the Earth (e.g heat-flow measurements) to more shallow processes such as natural and “engineered” reservoir dynamics and waste sequestration in the subsurface (e.g. seismic imaging).

Combining the abundant data to process-based numerical models fosters our understanding of the dynamical Earth. Process-based models are powerful tools to predict the evolution of complex natural systems resolving the feedbacks among various physical processes. Integrating high-quality data into direct numerical simulations leads to a constructive workflow to further constrain the key parameters within the models. Innovative inversion strategies, linking forward dynamic models with observables, are topics triggering a growing interest within the community.

The complexity of geological systems arises from their multi-physics nature, as they combine hydrological, thermal, chemical and mechanical. Multi-physics couplings are prone to nonlinear interactions ultimately leading to spontaneous localisation of flow and deformation. Understanding the couplings among those processes requires the development of appropriate tools to capture spontaneous localisation and represents a challenging though essential research direction.

We invite contributions from the following two complementary themes:

#1 Computational advances associated with
- alternative spatial and/or temporal discretisation for existing forward/inverse models
- scalable HPC implementations of new and existing methodologies (GPUs / multi-core)
- solver and preconditioner developments
- AI / Machine learning-based approaches
- code and methodology comparisons (“benchmarks”)
- open source implementations for the community

#2 Physics advances associated with
- development of partial differential equations to describe geological processes
- inversion strategies and adjoint-based modelling
- numerical model validation through comparison with observables (data)
- scientific discovery enabled by 2D and 3D modelling
- utilisation of coupled models to explore nonlinear interactions

Share:
Co-organized by EMRP1/SM7/TS10
Convener: Ludovic Räss | Co-conveners: Marie BocherECSECS, Thibault Duretz, Boris Kaus, Dave May, Georg ReuberECSECS, Sabrina SanchezECSECS, Ylona van DintherECSECS
Displays
| Attendance Mon, 04 May, 16:15–18:00 (CEST)
GD10.3

The distinction of a fluctuation from a long-term change in Earth processes is a key question in the assessment of the Earth's Climate change and in general geo- risk assessment. The distinction of a fluctuation from a steady change requires knowledge on the time variability of the signal and long term observations. Due to the decadal variability of sea level, reliable sea level trends can only be obtained after about sixty years of continuous observations. Reliable strain rates of deformation require a minimum of a decade of continuous data, due to the ambient factors leading to fluctuations. The session invites contributions that demonstrate the importance of long term geophysical, geodynamic, oceanographic and climate observatories. Advances in sensors, instrumentation, data analyses, and interpretations of the data are welcome, with the aim to stimulate a multidisciplinary discussion among those dedicated to the accumulation, preservation and dissemination of data over decadal time scales or beyond. With this session, we also would like to provide an opportunity to gather for representatives from observatories in Europe and also world-wide.

Share:
Co-organized by G6
Convener: Nina Kukowski | Co-conveners: Carla Braitenberg, Hans-Peter Bunge, Stuart Gilder
Displays
| Attendance Fri, 08 May, 14:00–15:45 (CEST)
TS10.3

Geologic processes are generally too slow, too rare, or too deep to be observed in-situ and to be monitored with a resolution high enough to understand their dynamics. Analogue experiments and numerical simulation have thus become an integral part of the Earth explorer's toolbox to select, formulate, and test hypotheses on the origin and evolution of geological phenomena.

To foster synergy between the rather independently evolving experimentalists and modellers we provide a multi-disciplinary platform to discuss research on tectonics, structural geology, rock mechanics, geodynamics, volcanology, geomorphology, and sedimentology.

We therefore invite contributions demonstrating the state-of-the-art in analogue and numerical / analytical modelling on a variety of spatial and temporal scales, varying from earthquakes, landslides and volcanic eruptions to sedimentary processes, plate tectonics and landscape evolution. We especially welcome those presentations that discuss model strengths and weaknesses, challenge the existing limits, or compare/combine the different modelling techniques to realistically simulate and better understand the Earth's behaviour.

Public information:
TS10.3/GD10.5/GM9.6
Analogue and numerical modelling of tectonic processes

By: Frank Zwaan, Fabio Corbi, Ágnes Király, Valentina Magni, Michael Rudolf
Link: https://meetingorganizer.copernicus.org/EGU2020/session/34918
___________________________________________________________________


Dear participants of EGU session TS10.3 on modelling of tectonic processes,

We will start the discussion at 10:45 CET on Monday 4 May, and it will last until 12:30 CET, although the chat will remain active for 30 min more.

This is how we plan to carry on the session:

• Every contribution will get about 5-10 minutes of discussion
• The conveners will introduce the contribution (title, authors,..)
• The presenting authors will give a short summary/introduction (2-3 sentences) of their work (@ authors, please prepare these in advance to ensure a smooth transition).
• Discussion with participants


If time permits, we will have a more general discussion after all contributions have been presented.

Here’s the order of the presentations:

• Withers & Cruden
• Hughes et al.
• Noguera & Marques
• Schöfish et al.
• Mannu et al.
• Maestrelli et al.
• Avila-Paez et al.
• Wang et al.
• Saha et al.
• Henriquet et al.
• Jiménez-Bonilla et al.

We are looking forward to meeting you in the session chat box!

Share:
Co-organized by GD10/GM9
Convener: Frank Zwaan | Co-conveners: Fabio CorbiECSECS, Ágnes Király, Valentina Magni, Michael Rudolf
Displays
| Attendance Mon, 04 May, 10:45–12:30 (CEST)
ITS4.2/ESSI4.2

All areas in the Earth sciences face the same problem of dealing with larger and more complex data sets that need to be analyzed, visualized and understood. Depending on the application domain and the specific scientific questions to be solved, different visualization strategies and techniques have to be applied. Yet, how we communicate those complex data sets, and the effect that visualization strategies and choices have on different (expert and non-expert) audiences as well as decision-makers remains an under-researched area of interest. For this "PICO only" session, we not only invite submissions that demonstrate how to create effective and efficient visualizations for complex and large earth science data sets but also those that discuss possibilities and challenges we face in the communication and tailoring of such complex data to different users/ audiences. Submissions are encouraged from all geoscientific areas that either show best practices or state of the art in earth science data visualization or demonstrate efficient techniques that allow an intuitive interaction with large data sets. In addition, we would like to encourage studies that integrate thematic and methodological insights from fields such as for example risk communication more effectively into the visualization of complex data. Presentations will be given as PICO (Presenting Interactive COntent) on large interactive touch screens. This session is supported by ESiWACE2. ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 823988.

Share:
Co-organized by EOS7/CL5/GD10/GM2
Convener: Niklas Röber | Co-conveners: Michael Böttinger, Joseph Daron, Susanne Lorenz
Displays
| Attendance Tue, 05 May, 16:15–18:00 (CEST)
ITS4.8/ESSI4.1

Data science, analytics and visualization technologies and methods emerge as significant capabilities for extracting insight from the ever growing volume and complexity of scientific data. The rapid advancement of these capabilities no doubt helps address a number of challenges and present new opportunities in improving Earth and Space science data usability. This session will highlight and discuss the novelty and strength of these emerging fields and technologies of these components, and their trends. We invite papers and presentations to examine and share the experience of:
- What benefits they offer to Earth and Space Science
- What science research challenges they address
- How they help transform science data into information and knowledge
- In what ways they can advance scientific research
- What lessons were learned in the development and infusion of these methods and technologies

Share:
Co-organized by GD10/GI2/PS6/ST4
Convener: Emily Law | Co-conveners: Thomas Huang, Simon Baillarin
Displays
| Attendance Fri, 08 May, 14:00–15:45 (CEST)
ITS4.1/NP4.2

This session aims to bring together researchers working with big data sets generated from monitoring networks, extensive observational campaigns and detailed modeling efforts across various fields of geosciences. Topics of this session will include the identification and handling of specific problems arising from the need to analyze such large-scale data sets, together with methodological approaches towards semi or fully automated inference of relevant patterns in time and space aided by computer science-inspired techniques. Among others, this session shall address approaches from the following fields:
• Dimensionality and complexity of big data sets
• Data mining in Earth sciences
• Machine learning, deep learning and Artificial Intelligence applications in geosciences
• Visualization and visual analytics of big and high-dimensional data
• Informatics and data science
• Emerging big data paradigms, such as datacubes

Share:
Co-organized by AS5/CL5/ESSI2/G6/GD10/HS3/SM1
Convener: Mikhail Kanevski | Co-conveners: Peter Baumann, Sandro Fiore, Kwo-Sen Kuo, Nicolas Younan
Displays
| Attendance Thu, 07 May, 08:30–12:30 (CEST), Attendance Thu, 07 May, 14:00–15:45 (CEST)
G3.6

The WEGENER initiative was started in 1981 with the aim of creating an interdisciplinary forum supporting geodynamic studies by means of space and terrestrial geodetic techniques. Therefore, WEGENER promotes the establishment of a consistent framework leading from data acquisition, to data analysis, modeling and interpretation of the results. These activities provide key information to a broad range of phenomena that have critical implications for society, particularly in the field of natural hazards and climate change using techniques such as GNSS, InSAR, LiDAR, space/air/terrestrial gravimetry and ground-based geodetic observations.
In this session, we seek contributions that improve our understanding of geodynamical processes and crustal deformations at the local-to-global scale by means of geodetic techniques and innovative modeling approaches. Contributions showing the benefit of integrating geodetic and complementary geophysical, hydrological, geological, oceanographical and climatological information are also welcome. Relevant submissions may focus on the earthquake cycle, volcanic processes, sea-level changes, fluid redistributions and near surface motions such as landslides and subsidence. We also encourage contributions discussing the realization and outcomes of Supersites in the frame of the GEO initiative, as well as reports of the establishment of new geodetic networks in tectonically active areas.
Among other activities, the WEGENER will contribute to the joint IAG-IASPEI sub-commission on Seismo-Geodesy.

Share:
Co-organized by GD10/SM2
Convener: Sara BruniECSECS | Co-conveners: Takuya Nishimura, Jean-Mathieu Nocquet, Haluk Ozener, Susanna Zerbini
Displays
| Attendance Thu, 07 May, 14:00–15:45 (CEST)
G4.3

Gravity and magnetic field data contribute to a wide range of geo-scientific research, from imaging the structure of the earth and geodynamic processes (e.g. mass transport phenomena or deformation processes) to near surface investigations. The session is dedicated to contributions related to spatial and temporal variations of the Earth gravity and magnetic field at all scales. Contributions to modern potential field research are welcome, including instrumental issues, data processing techniques, interpretation methods, innovative applications of the results and data collected by modern satellite missions (e.g. GOCE, GRACE, Swarm), potential theory, as well as case histories.

Share:
Co-organized by EMRP2/GD10
Convener: Jörg Ebbing | Co-conveners: Anne Barnoud, Carla Braitenberg, Mikhail Kaban
Displays
| Attendance Tue, 05 May, 16:15–18:00 (CEST)
SM7.1

Innovative forward and inverse modeling techniques, advances in numerical solvers and the ever-increasing power of high-performance compute clusters have driven recent developments in inverting seismic and other geophysical data to reveal properties of the Earth at all scales.

The interpretation of single disciplinary geophysical field data often allows for various, equally probable models that may not always sufficiently discern plausible hypotheses that are challenged. Therefore, co-validation of data from different disciplines is critical.

This session provides a forum to present, discuss and learn the state-of-the-art in computational seismology, non-linear and joint inversion, uncertainty quantification and collaborative interpretation.

Invited Speakers:
Christel Tiberi, "Joint inversion and collaborative interpretations in complex geodynamical context";
Andrew Curtis, "Variational Probabilistic Tomography";
Yann Capdeville, "Intrinsic non-uniqueness of the acoustic full waveform inverse problem"

Share:
Co-organized by EMRP2/ESSI1/GD10
Convener: Christian Boehm | Co-conveners: Maik NeukirchECSECS, Anne Barnoud, Ebru Bozdag, Stéphanie Gautier, Lion Krischer, Christian SchifferECSECS, Zack Spica
Displays
| Attendance Mon, 04 May, 16:15–18:00 (CEST)

GD11 – Planetary Geodynamics

GD11.1

In this session, we will share diverse approaches and ideas exploring the evolutionary pathways of terrestrial planets as complex systems. Their evolution is dependent on a wide array of different mechanisms and how they interact together. Based on present-day observation of examples within our Solar System, and simulations, we wish to foster discussion of models of planetary development: is there a general evolution pattern or is the process stochastic? The aim of this session is also to emphasize the importance of coupling between different layers of the terrestrial planets and feedback processes. Those are still often under-explored and have potentially major repercussions on planetary evolution. For example, surface conditions are dependent on atmosphere composition, which results from early and on-going degassing, atmospheric losses and chemistry, and chemical reactions with the surface. In turn, surface conditions can affect the habitability of the planet. Changes in surface temperature affect surface alteration processes as well as volatile exchanges and might even govern the tectonic regime.
We welcome contributions focused on a single terrestrial body as well as from comparative planetology. Both solar system bodies and exoplanets studies are covered. This session will bring together scientists from a wide range of domains, with a multi-disciplinary outlook, and examine how they can affect planetary evolution. Targeted disciplines include planetary structure and composition, mantle dynamics, tectonic regimes, geomagnetism, volcanism, surface interaction/erosion, geochemistry, petrology, remote sensing, structural geology, atmospheric sciences, volatile cycling, climate and habitability.

Share:
Co-organized by PS3
Convener: Cédric Gillmann | Co-conveners: Gregor Golabek, Sandra Piazolo, Elena SizovaECSECS, A Alexander G Webb
Displays
| Attendance Wed, 06 May, 16:15–18:00 (CEST)
PS4.4

The Open Session on Moon, Mars, Mercury, Venus as terrestrial planets systems aims at presenting highlights of relevant recent results through observations, modelling, laboratory and theory. Key research questions concerning the surface, subsurface, interior and their evolution will be discussed, as well as instruments and techniques from Earth and space.

Share:
Co-organized by GD11/GI6/ST1
Convener: Joe Zender | Co-conveners: Johannes Benkhoff, Alireza HosseiniaraniECSECS, Joana S. Oliveira, Francesca Zambon
Displays
| Attendance Tue, 05 May, 08:30–10:15 (CEST)
PS4.1

InSight landed on Mars on November 26th, 2018, bringing the first geophysical observatory to the surface of Mars. It attempts to constrain the interior structure of the planet and identify key physical processes that have shaped its evolution. At the time of the meeting, the instruments have been operating at full capacity for 14 months, or about half a Martian year. This session invites contributions from numerical modeling, experimental studies and data processing from various disciplines such as but not limited to geophysics, geology and geochemistry that aim to evaluate, interpret and complement the seismic and heat flow measurements, as well as rotational state, magnetic and atmospheric data of the InSight mission.
This interdisciplinary session will gather together results welcoming all research, whether part of the mission team or not.

Public information:
Additionally, a webcast will be held on Monday, May 4, 20:00 CEST (11:00 PST) to present the current status and scientific results of the InSight mission.

Join the webcast at
https://ethz.zoom.us/j/99691510985
Meeting-ID: 996 9151 0985

Share:
Co-organized by EMRP2/G6/GD11/SM1
Convener: Simon C. StählerECSECS | Co-conveners: Brigitte Knapmeyer-Endrun, Ana-Catalina Plesa
Displays
| Attendance Mon, 04 May, 16:15–18:00 (CEST)
PS1.1

We welcome general contributions in exoplanetary science including detection, characterisation and numerical modelling studies. We particularly welcome cross-disciplinary contributions involving interior-atmosphere, surface-geology, biogeochemistry, stellar-planetary interactions, high energy astro-particles, escape and plasma physics. We further welcome contributions on the climate, composition and interior of Mini Gas Planets and rocky exoplanets including Super-Earths, Earth-like and Venus-like worlds and their timescales of potential habitability.

Share:
Co-organized by GD11
Convener: Konstantin HerbstECSECS | Co-convener: John Lee Grenfell
Displays
| Attendance Mon, 04 May, 14:00–15:45 (CEST)

GD12 – Short Courses