ERE5.5 | Coupled thermo-hydro-mechanical-chemical (THMC) processes in geological media
EDI
Coupled thermo-hydro-mechanical-chemical (THMC) processes in geological media
Co-organized by EMRP1
Convener: Silvia De Simone | Co-conveners: Tuanny Cajuhi, Monia Procesi, Iman Rahimzadeh Kivi, Keita Yoshioka, Franco Tassi, Victor Vilarrasa
Orals
| Mon, 24 Apr, 08:30–12:30 (CEST)
 
Room -2.16
Posters on site
| Attendance Mon, 24 Apr, 14:00–15:45 (CEST)
 
Hall X4
Posters virtual
| Attendance Mon, 24 Apr, 14:00–15:45 (CEST)
 
vHall ERE
Orals |
Mon, 08:30
Mon, 14:00
Mon, 14:00
Geological media are a strategic resource for the forthcoming energy transition and constitute an important ally in the fight to mitigate the adverse effects of climate change. Several energy and environmental processes in the subsurface involve multi-physical interactions between the porous and fractured rock, and the fluids filling the voids: changes in pore pressure and temperature, rock deformation and chemical reactions occur simultaneously and impact each other. This characteristic has profound implications on the energy production and the waste storage. Forecasts are bounded to the adequate understanding of field data associated with thermo-hydro-mechanical-chemical (THMC) processes and predictive capabilities heavily rely on the quality of the integration between the input data (laboratory and field evidence) and the mathematical models describing the evolution of the multi-physical systems. This session is dedicated to studies investigating all or part of these THMC interactions by means of experimental, analytical, numerical, multi-scale, data-driven and artificial intelligence methods, as well as studies focused on laboratory characterization and on gathering and interpreting in-situ geological and geophysical evidence of the multi-physical behavior of rocks. Welcomed contributions include approaches covering applications of carbon capture and storage (CCS), geothermal systems, gas storage, energy storage, mining, reservoir management, reservoir stimulation, fluid injection-induced seismicity and radioactive waste storage.

Orals: Mon, 24 Apr | Room -2.16

Chairpersons: Monia Procesi, Tuanny Cajuhi
Experimental observations of coupled THMC processes
08:30–08:35
08:35–08:45
|
EGU23-11330
|
ECS
|
On-site presentation
Eko Pramudyo, Ryota Goto, Kiyotoshi Sakaguchi, and Noriaki Watanabe

Previous studies showed that cloud-fracture networks (CFNs), networks of permeable microfractures densely distributed over rock body, formed in granite at superhot geothermal conditions (> ~400 °C) through the stimulation of pre-existing microfractures by low-viscosity water near and above its critical temperature. The CFNs were also shown to form in granite at conventional (~150 – 300 °C) and superhot geothermal conditions by injection of low-viscosity CO2, through the same mechanism as that by low-viscosity water at superhot geothermal conditions. The stimulation of pre-existing microfractures by the low-viscosity CO2 implied that CFNs may be formed in the matrix (i.e., unfractured rock) of naturally-fractured conventional and superhot geothermal environments, where conventional bi-winged hydraulic fractures are known to be difficult to be achieved by injection of cold water. The present study illustrates the possibility of CFN formations in naturally-fractured geothermal environments, along with the shear-slip of the natural fractures, through CO2-injection experiments into cylindrical granite samples, each contained a sawcut (representing a natural fracture) inclined from the sample axis, under geothermal conditions. The experiments show that CO2 injection induced a larger cumulative shear displacement on the sawcut at conventional geothermal condition than at superhot geothermal condition. CFNs were formed at conventional and superhot geothermal conditions; nonetheless, the fracture-apertures were thinner for the CFN formed at conventional geothermal condition. The results imply that CFNs may be formed in naturally fractured geothermal environments, and may provide additional fluid-flow paths between the stimulated natural fractures.

How to cite: Pramudyo, E., Goto, R., Sakaguchi, K., and Watanabe, N.: Shear-slip and Complex Fracturing by CO2 Injection in Naturally Fractured Granite at Geothermal Conditions, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11330, https://doi.org/10.5194/egusphere-egu23-11330, 2023.

08:45–08:55
|
EGU23-15956
|
ECS
|
On-site presentation
|
Marco Fazio and Martin Sauter

Studying the mechanical and hydraulic behaviour of rocks at different depths is crucial to understand their potential as georeservoirs. In particular, permeability and porosity are affected by changing conditions and their values measured at surface do not represent the real value at a certain depth. Mostly rocks with low or intermediate permeability have been tested in this regard. Here, instead, we focus on a highly porous and permeable rock (approximately 25% and 1000 mD respectively): Bentheim sandstone.

Because of its petrophysical properties Bentheim sandstone is regarded as a reference rock material in laboratory experiments of rock mechanics: it is quasi monocrystalline (quartz up to 97%), with a well-sorted grain size distribution and well-connected pores, showing lateral continuity and homogeneous geometric, hydraulic and mechanical properties at the block scale.

Unsurprisingly, Bentheim sandstone, as a georeservoir, has been extensively tested in triaxial conditions for a variety of purposes, from oil and gas exploitation to geothermal energy and carbon storage and sequestration projects. In fact Bentheim sandstone is taken into consideration as a potential warm aquifer for low-cost geothermal energy and for studying anhydrite cementification in georeservoirs. Since Bentheim sandstone can be found at more than 2 km deep and has been previously buried down to 3.5 km, it is important to fully understand its behaviour at different pressure, temperature, hydraulic and stress-hystory conditions.

Previous laboratory studies have shown how the permeability of Bentheim sandstone is affected by effective confining pressure, bedding orientations and axial strain. In particular, it has been observed that an increase in effective pressure, corresponding to an increase in depth, does not influence the permeability of this sandstone. In reservoir geomechanics, this is a crucial finding. However, rocks at depths also experience different temperature and fluid pressure conditions, as well as different types of historic stress evolution. Although, general relationships between permeability and these parameters do exist, their specific effect on Bentheim sandstone has never been investigated in detail.

Based on triaxial experiments in a state-of-the-art apparatus, we demonstrate on large cylindrical samples the behaviour of Bentheim sandstone for quasi reservoir conditions. Our goal is to fill in the gap in understanding the hydromechanical behaviour of this highly-permeable rock and concomitant permeability changes at different georeservoir conditions, where a suite of geomechanical parameters is investigated.

How to cite: Fazio, M. and Sauter, M.: Simulation of different georeservoir conditions on a highly-permeable sandstone, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15956, https://doi.org/10.5194/egusphere-egu23-15956, 2023.

08:55–09:05
|
EGU23-13703
|
ECS
|
On-site presentation
Angel Ramirez, Pham Tien Hung, Leandra Weydt, and Ingo Sass

Matrix acidification is one of the most popular stimulation techniques to increase the porosity and permeability of reservoir systems. Usually, the thermal-hydro-mechanical properties of reservoir rocks affected by the matrix acidification process are studied using flow-through tests or autoclave experiments. In this study, a novel acidification approach was tested using a thermal triaxial device at the TU Darmstadt laboratory. Thereby, hydrochloric acid 0.0375% (HCl pH=2) was flushed continuously through a total of five Remlinger sandstone samples under reservoir conditions (90oC temperature, s1=25 MPa, and s3=23MPa). Changes in matrix permeability and other petrophysical parameters due to the chemical reaction between the rock sample and HCl were recorded before, during, and after the reactive experiments. In addition, outflow fluid samples were collected and the pH was subsequently measured. After approximately 30 days of continuous flow for each sample, the permeability increased for all the samples, with a maximum increase of 300%. Likewise, porosity increased from 13.2% to 14.5%. In contrast, P- and -S-wave velocities decreased from 2608 to 2189 m‧s-1 and from 1540 to 1380 m‧s‑1, respectively. Test results provide important information for reservoir stimulation and can be used to benchmark THMC models.

How to cite: Ramirez, A., Hung, P. T., Weydt, L., and Sass, I.: Long-term matrix acidification experiments under reservoir conditions using the Thermo-Triaxial device, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13703, https://doi.org/10.5194/egusphere-egu23-13703, 2023.

09:05–09:15
|
EGU23-7185
|
ECS
|
Virtual presentation
Chen Zhao, Qinhong Hu, Qiming Wang, Majie Fan, Jan Ilavsky, and Min Wang

Shale has been focused because of its potentials in fossil fuel as unconventional reservoirs and in carbon storage as cap rocks. Fluid rock interaction is important for shale study. Because hydraulic fracturing in unconventional oil and gas development and the sealing ability of cap rock are all related to the fluid-rock interaction. The fluid-rock interactions,  such as the spontaneous imbibition (SI), were studied on Wolfcamp Shale core samples in Midland Basin, west Texas in this work. Multiple experiments including X-ray diffraction (XRD), contact angle measurement, scanning electronic microscopy (SEM), and (ultra-) small angle X-ray scattering [(U)SAXS] were performed to characterize the mineralogy, wettability, and pore structure to assist the analysis of the SI data in Wolfcamp Shale. XRD results indicated the Wolfcamp Shale samples were dominated by carbonate and siliciclastics with different sample depths, which is concordant with the well-logging data. The SI experiments were conducted in hydrophilic de-ionized water (DIW) and hydrophobic D2T (a mixture of two parts of decane and one part of toluene). Most samples have layer structure, therefore, the SI experiments were performed in directions that parallel to the layer (P direction) and transverse to the layer (T direction) on each sample. The fitting slopes of SI results show that samples have better pore connectivity in hydrophobic D2T than DIW in both directions. In P direction, the imbibed volume of DIW and D2T are very close to each other, which indicate the Wolfcamp Shale could be more oil wet. (U)SAXS results provided the pore diameter distribution (PDD) of the samples, which separates the samples into two groups. Associated with mineralogy, group 1 is dominated by siliciclastic with pores at 10 nm and 50 nm, and group 2 is dominated by carbonate with pores at 100 nm and 600 nm. Coupled with PDD and mineralogy, the fitting slopes in group 2 in DIW P direction decrease and then increase with clay content with the turning-point at 30%. The micro-fractures and well-aligned clay minerals in SEM images in samples with more clay content could help to form fluid pathways during the DIW imbibition. Such a positive relationship in fitting slopes and clay content also appeared in D2T P direction imbibition. In summary, the experiments conducted on the Wolfcamp Shale in west Texas including SI, XRD, SEM, and (U)SAXS could investigate fluid transport mechanisms in shale to support the studies for unconventional reservoir development and carbon storage.

How to cite: Zhao, C., Hu, Q., Wang, Q., Fan, M., Ilavsky, J., and Wang, M.: Fluid-rock interaction of Wolfcamp Shale: the effects of pore structure and mineralogy, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7185, https://doi.org/10.5194/egusphere-egu23-7185, 2023.

09:15–09:25
|
EGU23-3131
|
ECS
|
On-site presentation
|
Luis Salalá, Jonathan Argueta, Noriaki Watanabe, and Noriyoshi Tsuchiya

The use of Enhanced Geothermal Systems (EGS) has been recognized as a viable source of renewable energy in regions with high geothermal temperatures. Nevertheless, geothermal reservoirs may experience reduced permeability during exploration or operation. Research on chelating agents in geothermal environments has been widely disseminated as a complementary method to conventional methods such as hydraulic and chemical stimulation. Previous studies reported fast and significant improvements in permeability in granitic and volcanic rocks using aqueous solutions of glutamic L-diacetate acid (GLDA) under acidic conditions. However, no studies have been conducted with chelating agents applied to volcanic rocks at different pH conditions, since pH determines the ionic species in the solution, and thus, the chemical interactions taking place in a system. Furthermore, the dissolution of minerals in these conditions was not quantified for modeling purposes. In the present study, an aqueous solution of the chelating agent GLDA at various pH conditions (2-10) was applied to improve the permeability of single-fractured intermediate to basic volcanic rocks. According to the results, permeability increases about up 4.3-fold under weak acid (pH 4) conditions, while it increases about 36-fold under alkaline (pH 10) conditions, due primarily to the formation of voids caused by mineral dissolution or groundmass dissolution, respectively. Moreover, channeled samples with mirror-conditions revealed that the formation of voids at acidic conditions was as deep as 135 µm by the selective dissolution of hematite, whereas an average of 4-µm dissolution of quartz was promoted at alkaline conditions. Although the depth of voids formed in alkaline conditions is less than the case of acidic, quartz composes the matrix that surrounds the phenocrysts of volcanic rocks, promoting a preferential fluid path that improved the permeability further at alkaline conditions. This study is the first step in spreading the use of this chemical stimulation technique to different volcanic-rock geothermal systems.

Keywords: EGS, chelating agents, permeability enhancement, andesitic rock, selective dissolution of minerals.

How to cite: Salalá, L., Argueta, J., Watanabe, N., and Tsuchiya, N.: pH dependence of mineral dissolution and permeability enhancement of intermediate to basic volcanic rocks by chelating agent flooding under geothermal conditions, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3131, https://doi.org/10.5194/egusphere-egu23-3131, 2023.

09:25–09:35
|
EGU23-13900
|
On-site presentation
Giancarlo Tamburello, Giovanni Chiodini, Giancarlo Ciotoli, Monia Procesi, Dmitri Rouwet, and Laura Sandri

In the last decades, the enormous potential for direct geothermal heat from aquifers attracted special attention, particularly toward those thermal springs indicating areas in which exploitation of geothermal energy might be economically feasible for indirect uses such as electrical power production. The availability of geochemical data besides the location of thermal spring areas assumes particular importance, especially in the first stages of a geothermal exploration program. In this work, we present a digitised format of the literature review of Gerald Ashley Waring on the geothermal springs of the world. This unprecedented dataset contains geographical coordinates (from georeferentiation) of ~6,000 geothermal spring areas, including complementary data such as temperatures, flow rates, total dissolved solids content (TDS, expressed in ppm), and quantitative chemical analysis of major elements (only for a few hundred sites). Using temperature and flow rate, we derive the heat discharged from 1483 thermal spring areas (between ~10-5 and ~103 MW, with a median value of ~0.5 MW and ~8300 MW in total). We complement this information with geological data sets currently available in the literature and analyse them using statistical and geospatial tools and a supervised machine-learning algorithm. We show that terrestrial heat flow, topography, volcanism, and extensional tectonic play a key role in the occurrence of thermal waters around the globe. These results can also be beneficial to address the geothermal interest towards specific and less studied areas and significantly drive the first steps of the geothermal surveys and detailed investigations. Finally, this data set in electronic format will be beneficial for future research on the spatial distribution of thermalism at a small scale and the variation of temperature and flow rate of several thermal springs in the last decades in certain regions.

How to cite: Tamburello, G., Chiodini, G., Ciotoli, G., Procesi, M., Rouwet, D., and Sandri, L.: Global thermal spring distribution and relationship to endogenous and exogenous factors, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13900, https://doi.org/10.5194/egusphere-egu23-13900, 2023.

09:35–09:45
|
EGU23-10601
|
ECS
|
Virtual presentation
Liangwei Xu, Lei Chen, Hao Wei, and Keji Yang

Shale is an unconventional oil and gas reservoir with both generation and storage characteristics. Diagenesis has an important impact on its organic petrological characteristics, reservoir physical properties, pore system structure characteristics, mineral component content and transformation. Diagenesis is of great significance for its porosity and permeability analysis, reservoir comprehensive evaluation and shale gas productivity. At present, the researches on diagenesis and diagenetic evolution mainly focus on conventional sandstone reservoir. Because the application of conventional oil and gas reservoir characterization technology to shale reservoir is limited, and the diagenetic characteristics of shale reservoir are difficult to identify, the researches on diagenetic evolution of shale reservoir are relatively weak, and the comprehensive researches on diagenesis and diagenetic evolution of shale reservoir are relatively scarce.

At present, there are mainly two kinds of research methods on the dual effects of thermal evolution and diagenesis of shale: the first is the direct observation method, which uses high-resolution equipment to analyze shale samples with different maturity and diagenesis to determine the characteristics and development differences of diagenesis. However, this method ignores the heterogeneity and regional differences of samples, and cannot show all the evolution characteristics of shale in the diagenesis process. The second is the physical simulation method, that is, the sample of low maturity is selected, the temperature series is set, and the generation of diagenesis process is induced by heating. This method reduces the heterogeneity of samples and the influence of regional differences on the experimental results to a certain extent. It has strong comparability and can provide the overall characteristics in the process of diagenesis. However, the disadvantage is that it lacks intuitive characterization and cannot clearly and intuitively display the diagenetic evolution characteristics of minerals in the same area.

In view of the above problems, the diagenesis and diagenetic evolution of low-mature organic-rich Marine type II shale in the Middle Proterozoic Xiamalin Formation in Zhangjiakou area of Hebei Province were studied by using the method of high temperature and high pressure physical simulation. The characteristics of diagenesis were observed and characterized in the simulated samples, and the types of diagenesis in the simulated products were identified. A conceptual model of shale diagenetic evolution sequence based on physical simulation is established. In addition, this study also uses direct observation method to characterize the diagenetic characteristics of natural marine shales of Xiamaling Formation in this area. Five diagenetic types including compaction, cementation, dissolution, hydrocarbon generation of organic matter and clay mineral transformation are identified, and diagenetic stages of Xiamaling Formation shales are divided. Furthermore, the marine diagenetic evolution sequence and diagenetic evolution model of the Mesoproterozoic Xiamalin Formation in Zhangjiakou area of Hebei Province are established (Fig.1). This study makes up for the deficiency in the study of shale diagenetic evolution, and has important reference and indicative significance for the development of other high-over-mature Marine shale gas reservoirs in China and the world.