EOS1.1 | Science and Society: Science Communication Practice, Research, and Reflection
EDI
Science and Society: Science Communication Practice, Research, and Reflection
Including Katia and Maurice Krafft Award Lecture
Including Angela Croome Award Lecture
Co-organized by GM12/NH9
Convener: Solmaz MohadjerECSECS | Co-conveners: Roberta Bellini, Francesco Avanzi, Usha Harris, Maria Vittoria GargiuloECSECS
Orals
| Wed, 17 Apr, 16:15–17:50 (CEST)
 
Room 1.15/16, Thu, 18 Apr, 08:30–12:20 (CEST)
 
Room M2
Posters on site
| Attendance Thu, 18 Apr, 16:15–18:00 (CEST) | Display Thu, 18 Apr, 14:00–18:00
 
Hall A
Posters virtual
| Attendance Thu, 18 Apr, 14:00–15:45 (CEST) | Display Thu, 18 Apr, 08:30–18:00
 
vHall A
Orals |
Wed, 16:15
Thu, 16:15
Thu, 14:00
Science communication includes the efforts of natural, physical and social scientists, communications professionals, and teams that communicate the process and values of science and scientific findings to non-specialist audiences outside of formal educational settings. The goals of science communication can include enhanced dialogue, understanding, awareness, enthusiasm, improving decision making, or influencing behaviors. Channels can include in-person interaction, online, social media, mass media, or other methods. This session invites presentations by individuals and teams on science communication practice, research, and reflection, addressing questions like:

What kind of communication efforts are you engaging in and how you are doing it?
How is social science informing understandings of audiences, strategies, or effects?
What are lessons learned from long-term communication efforts?

This session invites you to share your work and join a community of practice to inform and advance the effective communication of earth and space science.

Orals: Wed, 17 Apr | Room 1.15/16

Chairpersons: Solmaz Mohadjer, Roberta Bellini, Francesco Avanzi
16:15–16:20
16:20–16:30
|
EGU24-346
|
EOS1.1
|
On-site presentation
Robyn Pickering, Wendy Black, Tessa Campbell, Nkosingiphile Mazibuko, Amy Sephton, and Rebecca Ackermann

Communication with the public is a necessary part of geoscience outreach and museums are an established medium for this. However, in many places, including South Africa, even the physical structures of museums are colonial which can create an atmosphere of exclusion, rather than one of learning, discovery and inspiration. South Africa has a rich record of the history of life, from deep time to our own human origins and the public are fascinated with these stories. We need to acknowledge that, like most scientific disciplines, human evolution (or palaeoanthropology) itself has a colonial history. As a result, narratives of human origins are often racist and patriarchal, and demographic representation remains skewed to the Global North. The combination of this colonial legacy with our colonial museums means that human evolution narratives in this space tend to othering, which can alienate young people and impede both knowledge transfer and uptake of this field by young scholars. Here we present a case study of a new permanent human evolution museum exhibit, titled HUMANITY, at the Iziko South African Museum in Cape Town, South Africa. Our goal in producing this exhibit was to decolonize the narrative of human evolution and decenter Whiteness, specifically the Great White Explorer narrative of discovery, which is central to most museum displays on this theme. This exhibit was co-created, with active community engagement, and input from researchers, curators, artists, community leaders, educators, school teachers, university students and more. The exhibit does not fit traditional Western museum aesthetics of white walls, square information boards and objects on plinths. We flipped the order in which such exhibits are normally presented, i.e., starting in the deep past and working towards the present day. Our flipped approach has the advantage of starting with the visitor themselves and drawing people in, focusing on the biological and cultural diversity of people in South Africa today as a means for exploring how that diversity came to be. Throughout the exhibit, we weave a story of complex human interconnectedness, a narrative that is consistent with our current understanding of the braided stream analogy for human origins. The exhibit also addresses the negative legacies of palaeoanthropological practice and encourages critical reflection on race, skin color variation, and privilege. The biggest departure from previous exhibits comes from our intention to examine our own practice and to co-create an exhibit which speaks to a much broader audience. We believe this intentionality played a significant role in the success of the final installation and reaction from the public. We believe that being deliberate about moving away from colonial and Western norms is vital in the communication of science, in this case palaeosciences, to the public and scholars within the educational system. Our new HUMANITY exhibit could be a model for considering similar museum displays, especially those dealing with aspects of geosciences, palaeonthology and human origins, many of which have the same problems.

How to cite: Pickering, R., Black, W., Campbell, T., Mazibuko, N., Sephton, A., and Ackermann, R.: Decolonizing geoscience communication: a case study of a new human evolution exhibition at the Iziko South African Museum, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-346, https://doi.org/10.5194/egusphere-egu24-346, 2024.

16:30–16:40
|
EGU24-11442
|
EOS1.1
|
On-site presentation
Auguste Gires and Eleonora Dallan

In an area of widespread misinformation, it is crucial for scientists to reach out to the general public and explain their research topic to increase knowledge and, more importantly, to enhance curiosity and to stimulate people to pay more attention to their geophysical environment. The general aim of this research is testing an innovative approach to actively engage people on geosciences topics, in a funny and informal way, through short interactive food-related activities. As rainfall scientists, we carefully designed these activities to unveil part of the underlying complexity of this geophysical field. In particular, we focus on the  extreme variability of rainfall over wide ranges of scales in both space and time, of which people are usually unaware despite commonly experiencing rainfall. 

 

Each activity is designed with similar underlying concepts: 1) A single simple take home message on rainfall. 2) The studied feature is visible at first sight to strike people’s minds. 3) Real rainfall data is somehow mimicked with food. 4) The activity itself lasts a few minutes. 5) It is designed as a game to foster people's engagement. 

 

Various activities were designed with these specifications. An illustration is the rainfall drop size distribution variability which is highlighted through sweet or salty cookies (ex: macaron / “baci di dama”) representing drops variability in shape and in the actual size in their fall. Another illustration is the representation of rainfall monthly distribution and its variability, through the use of glasses with liquid (champagne, soda, water…) height corresponding to rainfall depth during a month. In each case, there is an incentive to engage in the game through the hope of getting the bigger cookie or most filled glass. Activities are implemented in informal settings (family, friends, lab meetings) during either snacks or dinner. In the former case, a single one is carried out while in the latter several ones -typically one per course- are. 

 

In order to evaluate if active engagement is indeed achieved, the following methodology is implemented. During the activity, a previously briefed outside observer fills a pre-defined grid to assess the level of engagement of people. After the activity, people are invited to let us know  about new ideas, observations, questions, and send us pictures on the topic of the activity. The latter step is much more qualitative. As a side product, how the “take home messages” are remembered by people is also partially assessed keeping the informal approach of the activity.  Implementation and interpretation of the activities in various contexts will be discussed in this presentation.

How to cite: Gires, A. and Dallan, E.: Actively engaging people on rainfall (or any geoscience topic) through short interactive food related activitie, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11442, https://doi.org/10.5194/egusphere-egu24-11442, 2024.

16:40–16:50
|
EGU24-19878
|
EOS1.1
|
ECS
|
On-site presentation
Setting Sail for Science- exploring water quality through water sports 
(withdrawn)
Katie Reilly, Sam Dobson, Anthony Elgar, Lauren Deere, and Iseult Lynch
16:50–17:00
|
EGU24-16522
|
EOS1.1
|
On-site presentation
Siobhán Power

Geologists, Geoscientists, or Earth Scientists – however we identify or whatever we do in our daily work, we are needed for stable human habitation on our planet in the future. Although people who know and understand the Earth are needed, there has been a decline in the number of people considering the possibility of entering our professions. What are we doing about it in Ireland? 

Ireland has a relatively good education system and a population with an interest in natural science, and yet the Earth-related sciences do not feature strongly in the national curriculum at primary nor secondary level, there is no national science museum, and with teachers lacking the tools to inspire students, very few students are doing degrees in the Earth sciences and continuing in careers in those areas. 

Various professional, cultural, and educational organisations have been working separately and together to address this issue in the last few years, and while the feedback is encouraging, and progress is being made, there is a lot more to be done. Some of the activities include a temporary exhibition at the national museum, a primetime television series, professional scientists input to national curriculum development, sponsoring of national young scientist prize, co-creation of teaching resources, teacher workshops, and an increase in publicly funded outreach projects.

As we look towards the next phase of activities and plans in a crowded and busy field of science communications and messaging, we need to learn from international best practice, place ourselves in the global context, and work together in a co-ordinated way to inspire the next generations to enable humans to question, understand, and live sustainably on the Earth.  

How to cite: Power, S.: We need new generations of people who know about the Earth – what are we doing about It … in Ireland?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16522, https://doi.org/10.5194/egusphere-egu24-16522, 2024.

17:00–17:10
|
EGU24-10867
|
EOS1.1
|
ECS
|
Virtual presentation
Philipp Aglas-Leitner, Maxime Colin, Caroline Jane Muller, Yi-Ling Hwong, and Steven Sherwood

Scientists of all fields share a duty to communicate their findings to the public. This is especially true in a time where false claims spread like wildfire and the correct information has a hard time receiving the necessary attention. Therefore, a multitude of different science communication approaches has been developed, including the so-called "Up-Goer Five Challenge". In recent years, this particular approach, sparked by an XKCD comic blueprint of the Saturn V Rocket, has become very popular among many science communicators and has even made its way to several scientific conferences.

The aim of this challenge is to encourage scientists to describe their research or other complex scientific topics in very simple terms, by only using the thousand most commonly used words. Apart from encouraging scientists to rethink jargon-loaded presentation styles, this approach has the advantage of potentially reaching a very broad audience by making science more accessible and at the same time inspire researchers to improve their communication skills and even see their own work from a different angle. However, this communication method will, of course, also come with certain downsides, as for example, depending on the audience, a very rigid application of the rules of the game might end up being more of a hurdle than a beneficial way of presenting complex issues.

Here is an example describing an atmospheric phenomenon called "Convective Memory":

Each day, when we look up in the sky, we can see those white soft-looking flying things above our heads. Sometimes they are tiny. One piece here, and another further away. But on some days, they can get really big and dark. Even kind of angry-looking. And then we, very often, wonder "Why do you have to be above my head and not somewhere else?"

One of the reasons is that this flying sky water has a very good memory and obviously likes to stay where it is: "I very much enjoy it here. I don't care if those humans down there are annoyed with me."

This memory works a bit like the piece of paper that you take with you when you go shopping so you don’t forget what to buy. This way, you can’t easily forget what you wanted to buy and stick to the stuff you need. This will help you even if the store owner decides to move some or all of the shopping goods in the store to another place. Thanks to that store owner, it is possible that you end up with "new" stuff that was not planned but you will at least have your piece of paper (your memory) to get the stuff you really need (see Maxime Colin 2020). The white flying things in the sky are like people going shopping: with a good memory, they stick to what they are, and do not become "new" and bigger so easily.

In this talk, we present the "Up-Goer Five Challenge" as applied to Convective Memory, discuss some challenges faced in using it, and offer potential remedies.

How to cite: Aglas-Leitner, P., Colin, M., Muller, C. J., Hwong, Y.-L., and Sherwood, S.: "Up-Goer Five Challenge": A way to make science more accessible?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10867, https://doi.org/10.5194/egusphere-egu24-10867, 2024.

17:10–17:20
|
EGU24-19052
|
EOS1.1
|
ECS
|
On-site presentation
Gregor Feigel, Matthias Zeeman, Marvin Plein, Dirk Schindler, Andreas Matzarakis, Andreas Christen, and Swen Metzger

Research concerning the general public and influencing decision-making necessitates timely dissemination of easily accessible results and data, with a focus on directly verifiable hands-on exploration rather than authoritative assessments in order to raise awareness and engage the public. This applies, for instance, to the high spatial and temporal resolution street-level weather and thermal comfort monitoring network operated in the City of Freiburg. Germany, by the University of Freiburg, to raise awareness for the significant spatial and temporal differences in, e.g., outdoor heat stress patterns in urban areas, which are crucial for informed urban planning and climate resilience. 

Addressing this gap, the uniWeather™ app and platform were developed to provide end-users, stakeholder and the general public with free, easily accessible near-real-time data and interpretation. With regard to the FAIR principles, the platform is being developed to support data form other research organisations such as universities, government agencies or companies that operate environmental sensor networks to be provided free of charge. uniWeather™ aims to encourage the sharing and access to data in near real-time by providing an easy-to-integrate service for tailored visualisation and interpretation.

In June 2023, the uniWeather™ app and monitoring network were announced in a press release from the University of Freiburg and in a newspaper article providing access to maps and real-time data from 42 street-level weather stations in the Freiburg region within 60 seconds of measurement. The app was readily welcomed by the public, researchers and the city of Freiburg. The project was also well received at public outreach events such as the Eucor-MobiLab Roadshow 2023 in Freiburg (26-30 June 2023) and the exhibition DATEN:RAUM:FREIBURG (4-31 August 2023) of the city of Freiburg. With more than 1.5k users in the first few weeks and continued interest in further functionalities, the platform will be continued and further developed to address the needs of the general public and different scientific communities.

How to cite: Feigel, G., Zeeman, M., Plein, M., Schindler, D., Matzarakis, A., Christen, A., and Metzger, S.: uniWeather™: Advancing real-time outreach in urban environmental sciences through app and platform, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19052, https://doi.org/10.5194/egusphere-egu24-19052, 2024.

17:20–17:30
|
EGU24-15324
|
EOS1.1
|
ECS
|
On-site presentation
Jane Walden, Léa Rodari, and Kathrin Naegeli and the Girls on Ice Switzerland Team

Anthropogenic climate change is a daunting issue facing today’s society. In recent years, youth have shown a growing interest in preserving the planet by becoming involved in political demonstrations and school strikes. It is thus of paramount importance that youth are well-informed on the topic and equipped with the necessary skills to share information with their communities. We seek to educate youth, particularly those from traditionally underrepresented genders in the sciences, about geosciences, art, and mountaineering, especially in the context of ongoing climate change. 

At Girls on Ice Switzerland, we believe that first-hand experience is the key to both learning and motivating scientific concepts. We offer tuition-free glacier expeditions for teenage girls*, where the selection process is independent of academic performance, giving equal opportunities to all interested youth, and ensuring socio-cultural diversity within the team. During the week-long expedition, participants conduct artistic and scientific modules with professionals, learn new techniques and carry out an experiment in small groups, and finally present their work to the public. Following the expedition, school workshops led by participant-scientist tandems build upon the scientific content of the expedition, allowing participants to share their knowledge with peers and distribute scientific information to a broader audience. This fosters self-confidence in the participants, helping them to become scientific ambassadors for their peers, and also provides them with invaluable networking and mentoring opportunities through their interaction with female scientists. 

Through these steps, participants are exposed to the scientific process: experimental design and performance, resiliency in the face of unforeseen challenges, and analyzing and communicating findings. The expedition experience has been shown to be empowering for participants: it boosts their confidence, motivates them at a critical stage in their lives, and provides them the opportunity to learn from female role models. School workshops and expeditions allow former expedition participants to be leaders amongst their peers and further deepen their understanding of the topics. In this way, we prepare future generations of scientists and members of society to think critically, and this experience gives them the knowledge and power to dispense information within their communities as scientific ambassadors.

*cisgender girls and transgender, agender, nonbinary, intersex, and genderqueer youth

How to cite: Walden, J., Rodari, L., and Naegeli, K. and the Girls on Ice Switzerland Team: Youth education and empowerment through outdoor experiential learning and peer-to-peer communication, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15324, https://doi.org/10.5194/egusphere-egu24-15324, 2024.

17:30–17:40
|
EGU24-6320
|
EOS1.1
|
On-site presentation
|
Emmanouil Kartsonakis and Athina Kokkori

The term "Science Communication" describes the scientific field of theoretical knowledge and practical skills that focuses on issues of two-way communication between the "scientific laboratory" and society, but also on communication between scientists coming from different fields of expertise. Its integration into school environments and educational institutions is an absolutely innovative action in the educational landscape. In addition, it can be safely considered as an expression of leadership of the persons and agencies involved since the role of the people who are called upon to apply the principle of leadership consists mainly in the management and coordination of systems and groups both on a synchronous and a longitudinal level: Leaders should contribute catalytically in the areas of motivating, supporting and developing colleagues, cultivating solidarity, encouraging innovative actions, establishing and defending the appropriate work culture and, ultimately, shaping strategy and vision. In short, leaders are actually charged with the task of achieving the goals set at the collective level by exerting a positive influence on the behavior of his associates, an effect that can greatly activate the feelings of passion, excitement and assimilation that characterize the scientific phenomenon. A typical case of all the above mentioned is the project Connect (https://www.connect-science.net/), a three-year project (2020-2023) in which the Regional Directorate of Education of Crete participated, included in the European Program "Horizon 2020" in framework of the "Science with and for Society" (SwafS) module. It was aimed at schools and offered a model that strengthens children's confidence in their engagement with science as a method of solving everyday problems and at the same time brings them into contact with scientists by involving parents and the local community. In other words, Connect tried to foster the belief that “science is for me”. Its evaluation has shown that the successful exercise of leadership, both at the level of the project coordinators and at the level of the principals of the participating schools, has been the critical factor for the success of the project and the achievement of the goal, i.e. Communication of Science with society.

How to cite: Kartsonakis, E. and Kokkori, A.: The role of leadership in education as a decisive factor for the Communication of Sciences: The case of the European project Connect  (Horizon2020), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6320, https://doi.org/10.5194/egusphere-egu24-6320, 2024.

17:40–17:50
|
EGU24-17948
|
EOS1.1
|
On-site presentation
Stefano Solarino, Gemma Musacchio, Maddalena De Lucia, Elena Eva, and Marco Anzidei

Nowadays everybody agrees that increasing preparedness for natural and not-natural hazards and fostering best practices is of paramount importance for a resilient society. Therefore, in the last years many scientific projects included a task, a work package - or were themselves - fully devoted to transferring the results of the studies carried on within the project to the society. This included intensive education activities to train people about a specific hazard.

However, educative and dissemination packages are often too generic or too specific, especially in cases where the natural hazard is not well known by the public or affects a limited area or population. In these cases, it may be helpful to carry out preparatory research to finely tune the educational aims/objectives.

We present the results of an online survey carried out in 2020–2021 to understand citizens’ level of knowledge about the phenomenon of sea level rise, including causes, effects and exacerbation, in order to finalize educational tools.

Since the last century, global warming has triggered sea level rise at an unprecedented rate. In the worst-case climate scenario, sea level could rise by up to 1.1 m above the current level, causing coastal flooding and cascading effects, thus affecting around one billion people worldwide and potentially becoming one of the most important climate issues in the future.

Our survey revealed that, although widespread and threatening, the phenomenon is not well known to citizens as it is often overshadowed by other effects of global warming. The results of our study were peculiar to prepare an educational campaign and set up initiatives for students and the public.

How to cite: Solarino, S., Musacchio, G., De Lucia, M., Eva, E., and Anzidei, M.: Know before you act. Effective risk education (should) starts from knowing gaps and preconceptions. A case study on sea level rise., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17948, https://doi.org/10.5194/egusphere-egu24-17948, 2024.

Orals: Thu, 18 Apr | Room M2

Chairpersons: Roberta Bellini, Francesco Avanzi, Maria Vittoria Gargiulo
08:30–08:35
08:35–08:45
|
EGU24-12003
|
EOS1.1
|
Highlight
|
On-site presentation
David Stainforth

When it comes to communicating climate change, both our understanding of what we don’t know and the uncertainties in the science are themselves core elements of our knowledge. That’s to say, what we know about uncertainty is part of what we know. Failing to communicate uncertainty and the limits of our understanding is failing to communicate the full picture of climate change.

In 2023, after many years of writing, my book, “Predicting Our Climate Future: What we know, what we don’t know, and what we can’t know”, came out. The book is targeted at a public audience and addresses the many exciting, deep, conceptual and practical challenges that we face in climate change science and climate change social science. It aims to show that there are fundamental questions here that are simply fascinating in themselves: intrinsically interesting irrespective of the social relevance of the research.

In doing this it has to shine a spotlight on the many things that we don’t know - particularly our limited ability to describe the climate of the future at local scales, and the consequences of climate change for the societies in which we live. Some might be concerned that doing this could undermine trust in climate science and work against our ability to tackle climate change. In practice the opposite is true. Acknowledging and presenting the limits of our knowledge upfront, increases the credibility of climate change information. It also provides a handle for people and diverse disciplines to actively engage with climate science and to bring their values and attitudes to risk into the debate.

Of course it is also important to be clear about what we do know: what really isn’t open to debate and why. Here I will discuss how I approach this balancing act between communicating the exciting aspects of what we don’t know while being clear about what we do. I will also discuss my experience of presenting these issues to public, academic and business audiences.

 

Further materials:

Stainforth, D., “Predicting Our Climate Future: What we know, what we don’t know and what we can’t know”, Oxford University Press, 2023.
(https://global.oup.com/academic/product/predicting-our-climate-future-9780198812937)

Stainforth, D.A. The big idea: can we predict the climate of the future?, The Guardian, 30th Sept 2023
(https://www.theguardian.com/books/2023/oct/02/the-big-idea-can-we-predict-the-climate-of-the-future)

Podcast: Instant Genius - Can we predict the climate of the future?

Podcast: Challenging Climate - Models and uncertainty

Podcast: Empty Space Inbetween - In conversation with David Stainforth

How to cite: Stainforth, D.: Climate Change: Communicating What We Don’t Know, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12003, https://doi.org/10.5194/egusphere-egu24-12003, 2024.

08:45–08:55
|
EGU24-11941
|
EOS1.1
|
ECS
|
On-site presentation
Iris Keizer, Nadia Bloemendaal, Peter Siegmund, and Rein Haarsma

We share insights from the communication efforts surrounding the KNMI`23 climate scenarios for the Dutch Caribbean islands of Bonaire, Sint Eustatius, and Saba (the BES islands). The scenarios were published by the Royal Netherlands Meteorological Institute (KNMI) in October 2023. We focus on the approach used, lessons learned, and insights gained. We communicate our scenarios through various approaches, including a report aimed at the general public, active engagement with stakeholders, end-users, policy and decision makers, and local communities through presentations, workshops, and discussions. These interactions aim to increase awareness, understanding, and cooperation. We aim to provide valuable insights for policy and decision makers and scientists across disciplines. As a government institute, we are committed to conducting policy-relevant research that supports the development of climate plans tailored to each BES island. This presentation examines the challenges, successes and lessons learned from our communication initiatives.

How to cite: Keizer, I., Bloemendaal, N., Siegmund, P., and Haarsma, R.: Communicating the KNMI’23 Climate Scenarios for the Dutch Caribbean  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11941, https://doi.org/10.5194/egusphere-egu24-11941, 2024.

08:55–09:05
|
EGU24-15622
|
EOS1.1
|
ECS
|
On-site presentation
Björk Johannes

Imagine that you  a (semi-governmental) scientific institute, conducting important and state-of-the-art research that you want to share with society. In addition to the science enthusiast that follows your every move and reads the news outlets that regularly cover your stories, you want to include groups of people that do not automatically come in contact with your communication efforts. How do you improve the accessibility of your science communication, specifically towards groups of people that are not automatically included? I will share valuable insights from my empirical social study on climate communication accessibility at the KNMI, the Dutch research and information center for meteorology, climate, air quality, and seismology.

In my presentation at EGU 2024, I will describe several factors that play a role on the perceived accessibility of climate change communication. These insights are based on interviews and focus groups held with respondents living in low socio-economic status neighborhoods and rural areas. In addition,  focus groups and interviews with KNMI-employees involved in climate communication took place.

[J(8] blog-like articles written by KNMI-employees were presented to respondents to read and evaluate. These articles aim to create understanding and awareness of climate phenomena and concepts and have been a vital part of KNMI's communication efforts for 10 years. I have analyzed this data through the lens of a conceptual model containing theories on accessibility and equity, models of communication, and framing and narratives.

My research confirms well-known factors which influence accessibility to broader audiences. For example, the excessive use of scientific jargon has a negative impact on the understanding and accessibility of communication. In addition, my research probes deeper to identify aspects that explain why these well-known factors cannot easily be overcome and to uncover which other, less obvious factors, play a role. Aspects like cultural identity, social acceptance and peer pressure, literacies and capital, recognition, and equity all play a part in the machine of social inclusion and accessibility of climate communication. Challenges and opportunities arise both within the institution and in relation to the social groups included in this research.

Based on the results and conclusions of this study, I will provide recommendations on how to improve the accessibility of climate communication to communities  that are typically reached to a lesser extent. While they are based on communication practices of the KNMI, they are generally applicable to other scientific institutions and/or governmental institutions. On the EGU 2024, I will present my recommendations to improve climate communication accessibility, as well as the results that these recommendations are based on.

How to cite: Johannes, B.: How to make climate communication more accessible to more  communities? Results from a case study featuring KNMI, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15622, https://doi.org/10.5194/egusphere-egu24-15622, 2024.

09:05–09:15
|
EGU24-6381
|
EOS1.1
|
ECS
|
On-site presentation
Svitlana Babiichuk, Stanislav Dovgyi, and Lidiia Davybida

The war in Ukraine has harmed all areas of public life. Educational institutions have had to adapt to restrictions and threats to ensure the safety and accessibility of education in challenging conditions, working to restore children's inalienable right to access knowledge. The Junior Academy of Sciences of Ukraine (JASU) is the largest Ukrainian out-of-school organisation, with over 200,000 students annually, which supports the development of science education in regions. It is also a Category 2 Centre under the auspices of UNESCO and the first organisation in Ukraine to join the Copernicus Academy network. 

The All-Ukrainian Competition "Ecoview" has been organised annually since 2019 by the GIS and Remote Sensing Laboratory of the JASU. The Competition aims to promote science education and improve students' climate literacy and environmental awareness. Using remote sensing data is the main requirement for participation.

Between 2021 and 2023, over 1000 students of all ages from different regions of Ukraine registered to take part in the Competition. Participants commonly chose topics related to climate change, air pollution, deforestation, land cover change, and urbanisation. Since 2022, there has been an increase in the number of projects dedicated to studying the war effects on the environment in Ukraine. The study focused on various aspects including the destruction of settlement infrastructure, the impact of hostilities on nature reserves, and the pollution of the Black Sea caused by the sunken cruiser „Moskva”. The participants most commonly used open satellite monitoring data as sources of information for their research, processing them using NASA Giovanni, EO Browser, Google Earth, QGIS, etc.

Results of the entrance survey, conducted during registration, show a notable boost in participants' awareness of remote sensing, enhanced critical thinking, and improved ability to work with primary sources. Thus, when asked about their experience with satellite imagery, 9.5% of the total number of respondents answered in the affirmative in 2021, 19.7% in 2022 and 22.5% in 2023. Furthermore, the survey results show that an increasing number of participants are consistently fact-checking information published in the media or on the Internet (72.6% in 2021, 74.8% in 2022 and 85% in 2023). Knowledge of satellite imagery sources and analysis methods enables students to independently verify expert opinions and media-provided information, which contributes to the development of media literacy.

The results of the annual competition are inevitably covered in the media and on social networks. To assist potential participants in selecting their own project topic and research tools, a specialised video course titled „Ecoview: Satellite Data in Nature Research” has been developed. This course is available for public access on the GIS and Remote Sensing Laboratory`s YouTube channel (https://www.youtube.com/playlist?list=PLbqB1gQogHvsyFDiOO0y6EVAVdjQnveDI).

Based on the experience and results of the Competition "Ecoview" in Ukraine, it will be organised internationally in 2024. The event is aimed to establish relationships between participants from different countries and to create an international community of like-minded people interested in using remote sensing for environmental research and protection.

How to cite: Babiichuk, S., Dovgyi, S., and Davybida, L.: Remote sensing as a tool for science education and engagement: the case of the All-Ukrainian competition "Ecoview", EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6381, https://doi.org/10.5194/egusphere-egu24-6381, 2024.

09:15–09:25
|
EGU24-11368
|
EOS1.1
|
ECS
|
On-site presentation
Gisela Domej, Stoyanka Manolcheva, Umed Aslanov, and Shuhrat Qodirov

A commonly encountered hurdle to overcome in international project implementation - particularly between “Western” and developing countries - are communication standards as cultural and language barriers as well as country-specific political or hierarchical structures may differ considerably.

In this context, we present the Central Asia Mission of the Austrian NGO Hilfswerk International (HWI; www.hilfswerk.tj) and its role in general communication and decision-making at the interface between science, society, and governments. Drawing from the experience of two different project setups, we delineate its activities not only in outreach but also in feedback transfer.

First, we discuss the classic geoscientific PAMIR Project dedicated to a large-scale geohazard assessment in Central Asia. Besides the traditional expected scientific outcomes, one major aspect of the project was to improve the livelihoods of local communities. Here, Hilfswerk International gradually deepened communication links among relevant stakeholders and actively engaged in the design, implementation, and coordination of actions directly dedicated to mountain communities. Key outreach activities consisted of training and info-campaigns, involving specialized staff like social workers, publications in different languages, gathering feedback and evaluation of the perception of tasks, personal visits to residents and direct talks to local communities, adapted means of communication and science dissemination, school programs, emergency awareness building at different levels, respecting of typical hierarchies (e.g. the Kyrgyz Ayl Ykmyty or the Afghan Village Council), etc.

Second, we present the mechanism of operation of an agro-economic project series initially consisting of two different grant concepts: economic development of small farming in the framework of the EU Program “Central Asia Invest”, and food safety on academic levels within Erasmus+. Hilfswerk International individually designed communication strategies ultimately linking (initially non-complementary) project types and creating win-win situations through outreach. For example, experiences of local farming communities were incorporated into academic curricula, while agricultural standards elaborated on academic levels were brought back in adequate forms to respective units of produce, i.a., by tailored training for farmers, round-tables, or the creation of local working groups that nowadays sustain themselves.

From these – and other – projects, we conclude several essential points:

  • Science often serves as a neutral base for argumentation and a ground for mutual agreement; however, it needs to be communicated in a way understandable for all involved parties respecting mentalities, traditions, cultural differences, levels of education, and the local context.
  • Strategies of science communication are to be adapted for every project, requiring versatility and flexibility; here, NGOs as non-partial organizations might have a wider scope.
  • Cooperation through a neutral science communicator has a positive effect on the working climate and, in the long term, makes communication channels self-sustaining.

At the example of Hilfswerk International, we point out the beneficial role of NGOs in general communication and outreach as successful international cooperation will become increasingly important in times of climate change, environmental pollution, water security, and resource consumption.

How to cite: Domej, G., Manolcheva, S., Aslanov, U., and Qodirov, S.: Hilfswerk International: An NGO in Central Asia as Science Communicator between the Society, Governments and the Private Business Sector, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11368, https://doi.org/10.5194/egusphere-egu24-11368, 2024.

09:25–09:35
|
EGU24-9101
|
EOS1.1
|
On-site presentation
Gilles Ramstein, Bruno Lansard, and Olivier Aballain

During the COP21 which took place in Paris, many climate researchers enhanced their interactions with different population sectors, to explain future and past climate changes.

Our group organized a seminar in one of the most prestigious journalist school (ESJ in Lille). Researchers on modelling and documenting past and future climate changes, as well as researchers from human and social sciences, provided a series of seminars. After the session devoted to questions from the audience, journalists and professors of the ESJ came down from the amphitheater. They emphasized the idea that our responsibility as researchers was also to teach journalists the different aspects / impacts of climate change. Their main point was to argue that it was in fact pivotal to get a better understanding of climate issues from the population.

This event was the onset of a big project that officially begun in 2016. We took some time to finally build an original training course. The novelty of this formation is based on 3 major ideas:

  • Co-construction of the formation by experts and journalists. For each issue of this training (past and future climate changes, biodiversity, justice, social impacts, economy, energy…), the courses were delivered by two teachers; one scientific expert and one journalist.
  • The structuration in different themes. Indeed, in most media, there is only one journalist that is responsible for climate and environment. Now that climate changes have modified many aspects of life in general, it is necessary to take them into account.
  • The accessibility. We decided to train through online-only courses at the level of a Master’s degree. For this first step, we used the large network of ESJ Lille and a collaboration with French-speaking countries to deliver all the lessons in French. This strategy allows students and journalists from more than 20 countries to gain access to this training. For instance, we have students from Haiti, Cameroon, Senegal, Algeria, Ivory Coast, Vietnam, Cambodia, Belgium…

 

The present evolution of this training is as followed:

  • Thematic evolution. We are now building new teaching modules that are not based on large issues, but rather on regions which allow us to tackle all the associated impacts. The first one has been finished last year on the Mediterranean basin; and a new one will be developed on the polar region.
  • Audience evolution. At the beginning, we only had 15 students, most of them being master degree’s students. Now, we have more than 55 students (and more than 150 applications per year), mostly journalists and continuing-education profiles.

The next step, and the main reason for this talk, is to push for similar trainings in different countries. We already have a relationship with South Korea, and would like to provide an English version of our training to share our experience with other scientists and journalists from different countries.

How to cite: Ramstein, G., Lansard, B., and Aballain, O.: Climate and Media: an efficient and original training for journalists, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9101, https://doi.org/10.5194/egusphere-egu24-9101, 2024.

09:35–10:05
|
EGU24-21986
|
EOS1.1
|
solicited
|
Angela Croome Award Lecture
|
On-site presentation
Gaia Vince

Today, our world of 8 billion people and countless other species faces planetary crises that are interconnected, complex, and existential in scale and comprehension, including climate change, biodiversity loss, pollution, nitrogen, and poverty. Scientists are at the heart of designing the studies to understand these threats, producing the data that calibrates them, and interpreting the those data. They are among the first members of society to recognise these threats and often the most committed to preventing their worst outcomes. For action on these crises, the general public, and policymakers representing them, need to understand the risks and also care about the outcomes: a job for the media, authors, artists and filmmakers. However, science and the media have very different communication styles and approaches, something that scientists often find uncomfortable. How can scientists best manage their public outreach, and work with the media to ensure their expertise and knowledge helps society navigate a better future?

How to cite: Vince, G.: Existential Threat: How Scientists Can Work With The Media To Communicate Complex Systemic Crises, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21986, https://doi.org/10.5194/egusphere-egu24-21986, 2024.

Coffee break
Chairpersons: Francesco Avanzi, Roberta Bellini, Solmaz Mohadjer
10:45–10:50
10:50–11:00
|
EGU24-6322
|
EOS1.1
|
Highlight
|
On-site presentation
|
Michael Slattery

In this paper, I focus on my personal experiences as an academic, educator, and researcher serving as an expert witness in environmental litigation. I discuss the relevance of my work in these roles within the context of two legal cases: the first, centered on soil erosion and sedimentation in small reservoirs, and the second, involving property damage from catastrophic flooding during two tropical storms.  

My objective is to demonstrate the extent and impact of the geosciences overall, and the field of geomorphology specifically, in contributing to legal proceedings related to environmental disputes. Throughout the years, I have collaborated with exceptional lawyers, each of whom has been invaluable in preparing me for cases, particularly in simplifying complex concepts and conveying them effectively. The ability to articulate the scientific process and principles to non-specialist audiences, such as lawyers, judges, and juries, in a lucid and comprehensible manner, is crucial to ensuring that the expert's testimony is relatable and compelling.

How to cite: Slattery, M.: Science communication and the law: Lessons learned from being an expert witness, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6322, https://doi.org/10.5194/egusphere-egu24-6322, 2024.

11:00–11:10
|
EGU24-10242
|
EOS1.1
|
ECS
|
On-site presentation
Martina Ivaldi, Fabrizio Bracco, Marina Mantini, and Luca Ferraris

In the contemporary era dominated by media, communication channels significantly shape citizens’ perception and preparedness for environmental emergencies. Specifically, media narratives about floods contribute significantly to citizens’ comprehension of river conditions, warning systems, and appropriate behaviors for safety. However, if these narratives oversimplify events there is a risk of limiting citizens’ learning, potentially leading to distorted perceptions. Similarly, media descriptions that focus on assigning blame, spotlighting the negligent behavior of infrastructure managers, scientists, politicians, and others, may lead citizens to perceive the event solely because of individual mistakes or violations. This perspective has the potential to foster a sense of citizen disengagement during emergencies, instead of emphasizing the pivotal role that each individual plays in ensuring safety during floods. Moreover, when institutions errors occur, such as inaccurate predictions, public opinion may deem these institutions unreliable, nurturing mistrust. Distrust in institutions negatively affects the communication of risk to the population, risking the cultivation of a heightened sense of autonomy among citizens, which could potentially translate into risky behaviour.

In the aftermath of floods, individuals form explanations and beliefs that influence their behavior. Therefore, media narratives should consider multiple factors for a comprehensive understanding.

This research aims to investigate whether media descriptions of a flood event in the Marche Region, in Italy, on September 15-16, 2022, exhibit tendencies towards oversimplification of causal factors, individual culpability, signs of institutional distrust, or whether the narratives account for the complexity of the phenomenon through a systemic approach. The event was caused by a severe storm, resulting in injuries and fatalities eight years after a previous flood.

This research was conducted in three distinct phases. The initial phase involved the creation of a dataset through an extensive review of narratives provided by the Civil Protection Unit of Marche Region in articles published in both local and national newspapers. In the second phase, various themes were outlined based on the literature covering blame approach, systemic approach, and institutional distrust in the context of natural disasters. A framework organized into four categories was established: 1) simplistic descriptions of causes, 2) inclination to attribute blame to institutions, groups, individuals, 3) indicators of institutional distrust, and 4) systemic and multifactorial perspectives. In the third phase, independent judges were tasked with evaluating the presence of these categories of the framework within the media review. Inter-judge agreement was then calculated to validate the framework, ensuring a thorough analysis of the media narratives surrounding the flood event. We discuss the potential usefulness of the framework for the assessment of media narratives accuracy and as a guide for future accounts of complex natural disasters, for the sake of fostering in citizens a proper representation of the events, an accurate risk perception and, eventually, setting the ground for community resilience.

How to cite: Ivaldi, M., Bracco, F., Mantini, M., and Ferraris, L.: Creating safety through media narratives: A framework for investigating potential biases in describing adverse complex phenomena., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10242, https://doi.org/10.5194/egusphere-egu24-10242, 2024.

11:10–11:20
|
EGU24-1438
|
EOS1.1
|
On-site presentation
Emma Hudson-Doyle, Jessica Thompson, Stephen Hill, Matt Williams, Douglas Paton, Sara Harrison, Ann Bostrom, and Julia Becker

Science communication associated with natural hazards risk contains many levels of complex, interacting, uncertainties. These uncertainties arise due to variabilities between systems, lack of scientific knowledge, comprehension, incomplete information, and undifferentiated alternatives. Uncertainties also occur due to relationships, roles, responsibilities, and needs.   This is compounded by the evolving nature of response needs and changing communication networks. Further, varied understanding of what scientific uncertainty is, and where it comes from, affects people’s trust in and use of science advice. Thus, official guidelines, such as the International Panel on Climate Change and the World Meteorological Organisation, indicate that to communicate ethically, we should be open and transparent about any associated uncertainties. However, to communicate uncertainty effectively across diverse audiences, users, and decision-makers, we must understand and adapt to the different ways people perceive that uncertainty.

We thus conducted mental model interviews to understand perspectives of uncertainty associated with natural hazards science. Participants ranged from officials involved in decisions around natural hazards in Aotearoa NZ, through to scientists and the public. The interviews included three phases: an initial elicitation of free thoughts about uncertainty, a mental model mapping activity, and a semi-structured interview protocol to explore further questions about scientific processes and their personal philosophy of science. Two phases of data collection and analysis occurred. In phase 1, an initial qualitative analysis considering a cohort of 25 participants led to the construction of key themes, including: (a) understanding that, in addition to data sources, the ‘actors’ involved can also be sources of uncertainty; (b) acknowledging that factors such as governance and funding decisions partly determine uncertainty; (c) the influence of assumptions about expected human behaviours contributing to ‘known unknowns’; and (d) the difficulty of defining what uncertainty actually is.  Additional influences on perceived uncertainty were also recognised, and require further research, including: an individual’s understanding of societal factors; the role of emotions; using outcomes as a scaffold for interpretation; and the complex and noisy communications landscape.

To investigate how views on uncertainty varied with familiarity with, and experience in, science an additional 6 interviews were conducted with non-scientists. This enabled a secondary qualitative investigation in Phase 2, exploring how mental models of uncertainty varied with levels of science expertise. This considered all participants across both data collection periods (n=31). Participants were categorised across three cohorts: Scientists, Science-Literate, and Lay Public. A comparative qualitative analysis of their mental model maps identified an increase in map organisation with science experience, suggesting greater science training results in a more developed and structured mental model of uncertainty. There were also substantive differences, with Lay Public participants focused more on perceptions of control, safety, and trust, while Scientists focused more on formal models of risk and likelihood. These findings are presented to enhance hazard and risk communication, alongside the design of our interview methodology, which could be adapted for participatory and co-development research and to identify decision-relevant communication approaches.

How to cite: Hudson-Doyle, E., Thompson, J., Hill, S., Williams, M., Paton, D., Harrison, S., Bostrom, A., and Becker, J.: Using mental models as a tool to understand perspectives of scientific uncertainty and effectively communicate natural hazards science advice., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1438, https://doi.org/10.5194/egusphere-egu24-1438, 2024.

11:20–11:30
|
EGU24-9402
|
EOS1.1
|
On-site presentation
Martin Archer, Cara Waters, Simon Foster, Antonio Portas, and Carol Davenport

Educational research shows participation issues across Science Technology Engineering and Mathematics (STEM) are largely due to whether students see these areas and their potential career opportunities as relevant and accessible to “people like me”. These perceptions form early and remain relatively stable with age, which has led to recommendations for increased provision and quality of careers education/engagement at both primary and secondary levels. Of STEM-related fields, the space sector is one of the most diverse and rapidly growing industries worldwide and of strategic priority to many countries. This highlights the need for space careers education in particular. We introduce a new space careers resource “I’m a Space Person”, which leverages personal attributes to help children identify with different space careers. Information about each of the 36 varied roles featured is distilled down onto a simple postcard format, with an accompanying website to enable further exploration. Resources for parents/carers and teachers are also provided to assist them in supporting children’s careers education. We present the development process of this resource and its usage thus far by the UK Space Agency in a nationwide roadshow. Finally, we discuss how the existing resources could be used and adapted for different countries and contexts.

How to cite: Archer, M., Waters, C., Foster, S., Portas, A., and Davenport, C.: Supporting Children’s Space Careers Education: “I’m a Space Person” , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9402, https://doi.org/10.5194/egusphere-egu24-9402, 2024.

11:30–11:40
|
EGU24-11952
|
EOS1.1
|
ECS
|
On-site presentation
Rory Selby-Smith, Siobhán Power, Fergus McAuliffe, Hannah Binner, and Elspeth Sinclair

Launched in 2021, the Geoscience for Leaving Certificate Geography Continuing Professional Development Course, run by iCRAG, the Science Foundation Ireland research centre in Applied Geosciences, and Geological Survey Ireland, a division of the Government of Ireland, has entered its third iteration. Addressing the absence of geoscience as a standalone subject in Irish schools, this course introduces post-primary teachers, and therefore their students, to geoscience through the non-compulsory subject of geography. 

In this course, teachers work in collaboration with geoscience researchers to produce an array of free, readily accessible geoscience resources via the iCRAG and Geological Survey Ireland websites. This addresses the shortage of specialised geoscience material available to Irish geography educators, thus ensuring that students have access to contemporary and accurate geoscience information. Furthermore, the involvement of teachers from a variety of educational contexts guarantees that the resulting lesson plans are versatile and suitable for a broad spectrum of educational settings.

In the 2023 iteration of the course, a diverse range of educational resources were developed, including field guides, a 6-week module and lesson plans. These materials integrated seven of the eight recognised active learning intelligences: Linguistic, Logical-mathematical, Visual-spatial, Bodily-kinaesthetic, Interpersonal, Intrapersonal and Naturalistic. With the support of researchers, teachers were able to incorporate essential geoscience skills such as field work, data collection, mapping/GIS, critical thinking and other scientific skills into the curriculum. The lessons were differentiated to meet the varied needs of students, whilst ensuring there was a focus on the Leaving Certificate exam (the final exam of the Irish secondary school system and main gateway to third level). Teachers reported significant benefits from their interactions with geoscientists, appreciating the opportunity to consult with specialists for in-depth inquiries and clarifications. Likewise, it is hoped that students reap the rewards of this educational approach, deepening their understanding of geoscience.

Researchers, from iCRAG and Geological Survey Ireland, participating in the program also derived significant benefits, particularly in gaining an understanding of how to distil complex scientific topics for a varied student audience, something that teachers are expert at. The preparation phase for their presentations underscored the importance of balancing technical accuracy with the existing curriculum constraints, an important consideration given the occasional misalignment between current geoscience knowledge and the content of the Leaving Certificate geography syllabus. This exposure to curriculum limitations gives researchers an insight into the public’s perception of science. Additionally, teachers exposed the researchers to a range of student perspectives, such as the diverse reactions to geothermal energy. Also, the observation of differentiated teaching methods, which are not often found in the traditional university lecturing styles, provided invaluable insights into the diversity of educational approaches.

The CPD course exemplifies a successful model of collaboration between teachers and geoscientists, enhancing geoscience education while providing mutual benefits. It not only enriches the teaching methodology but also offers researchers a unique perspective on the dissemination of scientific knowledge, thereby bridging the gap between academic research and practical classroom application.

How to cite: Selby-Smith, R., Power, S., McAuliffe, F., Binner, H., and Sinclair, E.: Connecting worlds: Mutual benefits of teacher–researcher interaction., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11952, https://doi.org/10.5194/egusphere-egu24-11952, 2024.

11:40–11:50
|
EGU24-3519
|
EOS1.1
|
ECS
|
Highlight
|
On-site presentation
Paula Naomi Irapta and Vien Valencia

What started as an idea to incorporate geoeducation in community art practices evolved into youth-led educational workshops that integrated scientific and local knowledge to understand the physical, social, and cultural aspects of a landscape. The Nomad Projects are community art initiatives in the Philippines that explore the relationship of communities with their landscape through artistic practices and dialogue.

In 2023, The Nomad Projects launched the OpenEdu workshops which invites young professionals (artists, musicians, scientists, etc.) to share their expertise and knowledge relevant to the areas where partner communities reside. These workshops aimed to bring information about the landscape that may not be easily accessible to these communities that reside in them. However, due to the grassroots and participatory nature of these projects, the workshops evolved into a “pot-luck” style knowledge sharing where all participants share knowledge through dialogue. Young professionals with diverse backgrounds, from the humanities to the sciences, shared their expertise and also introduced scientific instruments while residents shared their experiences and their own understanding of their landscape. These workshops became a unique ‘format’ of geoeducation that integrates scientific theories and local knowledge for a holistic understanding of the landscape. These workshops also served as avenues to discuss landscape-related social issues such as landscape modification (i.e. dam-building, reclamation), sea level rise, and geohazards. These discussions strengthened calls for social justice, especially for these vulnerable communities that bear the brunt of irresponsible anthropogenic landscape modifications and climate change. Here we share best practices and reflections of two OpenEdu workshops : “Landscape as Classrooms” and “Wetlands as Classrooms”. 

Landscape as Classrooms was a small group-conversation facilitated by a geoscientist attended by young professionals like artists, academics and members of the Dumagat Remontado indigenous group. It was held outdoors with the participants sitting in a circle on a gravel bar at the Tinipak River. This allowed the discussion on river processes and river morphology where participants can see the actual landforms being discussed around them. This is one of the first ‘formal’ introductions of the geodiversity concept outside the Philippine academe. Geoheritage value of the area was recognized from the rare occurrence of a bedrock channel as well as the importance of the river’s geosystem services to the indigenous population that reside there. 

“Wetlands as Classrooms” included a bigger audience of community members of Sitio Apugan, a hamlet in the Pampanga delta at the coast of Manila Bay. This hamlet has experienced landscape changes through sea-level rise that are documented in the residents’ memories of their area. Presently, this hamlet is perpetually flooded and is one of the “sinking” villages in the Philippine coasts. The workshop was also facilitated by geoscientists and included discussions on delta morphologies, watersheds, groundwater, subsidence, and sea-level rise.

We present our experiences and reflections of organising, facilitating, and participating in these workshops to show examples of youth-led initiatives outside the traditional “top-down” and “bottom-up” approaches to geoeducation, where knowledge is shared by and for the participants through meaningful exchanges. 

How to cite: Irapta, P. N. and Valencia, V.: Filipino youth-led place-based geoducation through knowledge sharing between young professionals and residents : the Nomad Projects OpenEdu workshops, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3519, https://doi.org/10.5194/egusphere-egu24-3519, 2024.

11:50–12:20
|
EGU24-2760
|
EOS1.1
|
ECS
|
solicited
|
Katia and Maurice Krafft Award Lecture
|
On-site presentation
|
Sinelethu Hashibi and Rosalie Tostevin

South Africa has an exceptionally rich geological heritage, including tourist attractions such as Table Mountain and the Cradle of Humankind, as well as important economic deposits, such as gold, diamonds, coal, and Platinum-Group-metals. South Africa also has a rich cultural and linguistic heritage. Our people are known for their resilience, born from our uncomfortable and ugly past – apartheid. Although apartheid came to an end in 1994, its impact remains visible today, with widespread poverty, inequality, poor education, violence and corruption. English, despite only being a first language for 8% of the population, dominates scientific discourse in South Africa. This is partly a result of apartheid, whose aim was to exclude the majority of non-white South Africans from the scientific community. Given the poor education system, many South Africans, despite holding a grade 12 qualification, still struggle with the language, particularly at varsity level. IsiXhosa is the mother tongue of over 8 million people, and is mutually intelligible with Zulu, Northern Ndebele and Southern Ndebele, meaning it is potentially accessible to 23 million people. Classroom studies have demonstrated that people engage more and understand better when the conversation is in their native tongue1-3

Despite the fact that South Africa is an exporter of many geological resources, and the intertwined history of mining with the black community, geology remains inaccessible to most people. South Africans, and Africans in general, are big storytellers - stories about the constellations, the moon, and the universe as a whole. This project, Reclaiming the rocks: ukuthetha ngezifundo zomhlaba ngesiXhosa, is an open invitation to invite all South Africans to share in their rich geological history through storytelling. It is a statement that science, like music, knows no language. We have summarized the most compelling stories about South Africa’s geological history, translated them into isiXhosa, and host them on an open access website (chosindabazomhlaba.com), and on YouTube. Recently, we started a school drive, reading these stories to school children. This project has had an impact on the lives of many people, whether they spoke isiXhosa or not, geologists or not. Next, we plan to write a children’s book and expand the school drive. Our ultimate goal is to develop a Geological encyclopedia written in isiXhosa and the other South African languages.


1Benson, (2004) The importance of mother tongue-based schooling for educational quality. Paper commissioned for the EFA Global Monitoring Report 2005, The Quality Imperative, UNESCO, Paris

2King, K and Mackey, A (2007) The bilingual edge: Why, when, and how to teach your child a second language. New York: Collins.

3Salili, F and Tsui, A (2005) ‘The effects of medium of instruction on students’ motivation and learning’, in Hoosain, R and Salili, F (eds) Language in multicultural education (Series: Research in Multicultural Education and International Perspectives) 135-156. Greenwich, CT: Information Age Publishing.

 

How to cite: Hashibi, S. and Tostevin, R.: Reclaiming the rocks: ukuthetha ngezifundo zomhlaba ngesiXhosa, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2760, https://doi.org/10.5194/egusphere-egu24-2760, 2024.

Posters on site: Thu, 18 Apr, 16:15–18:00 | Hall A

Display time: Thu, 18 Apr 14:00–Thu, 18 Apr 18:00
Chairpersons: Maria Vittoria Gargiulo, Francesco Avanzi, Roberta Bellini
A.124
|
EGU24-7951
|
EOS1.1
|
ECS
Laura Reilly

 "Quake Shake" transcends its catchy name; it is a captivating and educational earthquake outreach initiative tailored specifically for the Irish community. The programme is run by DIAS and co-financed by Geological Survey Ireland. Building on the success of the Seismology in Schools programme (SiS), Quake Shake aims to facilitate the operation of affordable seismometers called Raspberry Shakes in schools, homes, and public institutions. The overarching objective is to foster the development of an integrated community of citizen seismologists throughout Ireland. This poster provides a glimpse into the programmes development: to educate people from all walks of life in Ireland when it comes to earthquake awareness about both Irish and Global earthquakes.  It illustrates how Quake Shake is actively currently building a community of citizen seismologists across Ireland.

How to cite: Reilly, L.: "Quake Shake" - A New Citizen Earthquake Outreach Programme In Ireland., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7951, https://doi.org/10.5194/egusphere-egu24-7951, 2024.

A.125
|
EGU24-20046
|
EOS1.1
Antonella Peresan, Gabriele Peressi, Barbara Zar, and Carla Barnaba

Inspired by the constructive experiences acquired during the past years with high school students (e.g. Peresan et al, 2023 and references therein) the National Institute of Oceanography and Applied Geophysics (OGS), in collaboration with the Civil Protection of the Friuli Venezia Giulia Region (PCFVG) developed a new educational project on seismic risk awareness, prevention and mitigation. The students from a high school in Northeastern Italy, were mainly involved in communication activities, training and the development of a culture of civil protection and risk awareness, as well as self-protection measures to be taken in the event of a crisis.

The project was coordinated by OGS staff and an official from Regional Civil Protection. The involvement of these two bodies was essential in the event of an earthquake occurring in the Region: the OGS provides real-time earthquake parameters (epicentre, magnitude and ground shaking), while the Civil Protection has the task of coordinating the emergency management (including services and bodies responsible for maintaining roads and buildings).

The exercise in the operations room was especially  useful for students  to understand the most important aspects to consider in an emergency, how priorities are handled and how the decisions made by the decision makers are communicated. This type of exercise showed that actively involving students is the right way to teach them about complex issues (earthquakes) and turn them into active citizens. In fact, after this experience, two students signed up for their community's disaster response team.

Peresan A. et al, 2023. Earth Sci. Syst. Soc., 22 August 2023, https://doi.org/10.3389/esss.2023.10088

How to cite: Peresan, A., Peressi, G., Zar, B., and Barnaba, C.: An exercise in the Civil Protection Operations Room to explain to high school students how an earthquake emergency is handled, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20046, https://doi.org/10.5194/egusphere-egu24-20046, 2024.

A.126
|
EGU24-11655
|
EOS1.1
Olivier Dewitte, Joseph Martial Akame, Diawara Bandiougou, Özlem Adiyaman Lopes, Antoine Dille, François Kervyn, Benoît Smets, Caroline Michellier, and Camille François

Many regions of Africa are exposed to a large variety of geo-hydrological hazards such as earthquakes, volcanic eruptions, landslides, floods, karst collapses and large urban gullies. Despite the soaring impacts on population, infrastructure and the environment associated with the occurrence of these hazard risks, most regions are under-studied. In addition to this lack of information, stakeholders, policy makers and the public at large remain relatively poorly aware of the hazard and risk problems, whether it is about their causes, their impact, and/or their mitigation. This overall lack of knowledge and awareness is associated with an aggravation of the impacts as the growing and vulnerable population of these regions, in search for new settlements and opportunities, is often moving towards areas that are more prone to natural hazards. This is in this context that UNESCO supports the preparation and dissemination of a guide booklet on geo-hydrological hazards for stakeholders, policy makers and the general public. The booklet targets ten African countries (Angola, Burundi, Cameroon, Central African Republic, Chad, Democratic Republic of the Congo, Equatorial Guinea, Gabon, Republic of the Congo, São Tomé and Príncipe) that are covered by the UNESCO regional office of Yaoundé. The aim of this work is to raise collective awareness of the need to prevent natural hazard risks at local, regional and national levels in order to ensure the protection of populations and promote the sustainable development of territories. In this way, UNESCO aims to guide and advise the ten African countries by providing them with useful and practical information.

How to cite: Dewitte, O., Akame, J. M., Bandiougou, D., Adiyaman Lopes, Ö., Dille, A., Kervyn, F., Smets, B., Michellier, C., and François, C.: Raising awareness to geo-hydrological hazard risks in African countries: A guide booklet for stakeholders, policy markers and the public at large, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11655, https://doi.org/10.5194/egusphere-egu24-11655, 2024.

A.127
|
EGU24-19634
|
EOS1.1
Caroline Michellier, Innocent Bahati Mutazihara, Steven Bakulikira, Yves Ngunzi Kahashi, Blaise Mafuko Nyandwi, Bernardin Ulimwengu Biregeya, Matthieu Kervyn, and François Kervyn

Improving understanding and awareness of risks associated with natural hazards among the population at risk and DRR managers is essential for achieving the objectives of the Sendai Framework. This is particularly crucial in contexts where natural hazard risk knowledge is scarce and poorly disseminated, while the frequency of disasters and the severity of their impacts are high.

Highly interactive, educational games are an engaging method for exposing players to disaster risk situation by allowing them to observe and acquire knowledge, train their problem-solving and decision-making skills, and test different disaster risk reduction (DRR) strategies, while experiencing the consequences of disasters in a safe and entertaining environment.

Such an approach based on educational games is experimented in eastern DRC, with the Hazagora and Chukuwa games. Hazagora is a board game originally designed for secondary school children. It is used not only as a knowledge-building tool, but also to raise awareness regarding the potential impacts of disasters and how to reduce them, through active engagement of participants in discussion on DRR strategies. As such, this approach sits at the science-policy-practice interface, involving not only children, but also teachers, scientists, civil society organisations and civil protection representatives. Building on this experience, the Chukuwa card game was developed as a disaster risk awareness tool for primary school children, whose ability to take their new understanding back to their families is recognized as a vector for disseminating knowledge.

After several years of experimentation, some practical limitations linked to the contextualisation and institutionalisation of these games have however been identified. Based on the lessons learned, adaptations of the Hazagora game are being considered, as is the translation of the Chukuwa card game into local languages, alongside the strengthening of the involvement of secondary and primary education authorities and the integration of these tools into school (extra-)curricula.

Educational games are therefore an effective learning tool for introducing participants to the concepts of natural hazards, risks and disasters, as well as for actively and sustainably engaging them in discussions and reflections on DRR strategies conducive to strengthening the risk culture within the community.

How to cite: Michellier, C., Bahati Mutazihara, I., Bakulikira, S., Ngunzi Kahashi, Y., Mafuko Nyandwi, B., Ulimwengu Biregeya, B., Kervyn, M., and Kervyn, F.: Educational games to foster schoolchildren's understanding of natural hazards and raise their disaster risk awareness - Lessons learned from Central Africa, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19634, https://doi.org/10.5194/egusphere-egu24-19634, 2024.

A.128
|
EGU24-6332
|
EOS1.1
|
Hazel Jeffery and Helena Martins

#ClimateResearchNet

Climate Science is an active field of research whose findings are constantly feeding our knowledge about the changing climate, future scenarios and possible solutions. The climate-research community plays a key role in informing policy- and decision-makers, business and society. Hence, climate researchers are frequently urged to engage in climate change dialogues, as they are crucial stakeholders.

There is often a long gap before published research results reach the policy universe and an even longer time before they reach the rest of society. This network aims to give climate research communication a push so that its results are shared faster, more efficiently and more broadly.

A group of EU and nationally-funded climate research projects identified the need to collaborate and build a community of climate communicators to increase the impact of our research. Currently, there are over 20 projects represented in our network.

Objectives of the Network

  • Increasing the impact of each member’s communication by:
  •        Reaching a broader and more diverse audience,
  •        Having a pool of valuable content to share regularly - to keep our social networks active.
  • Creating a community of practice to build common knowledge on best practices and to make climate-research communication more impactful.
  • Establish a strong presence of the climate research community in communication networks and on social media. 

Whilst the network is still in its infancy, there have been some initial achievements, including:

  •  A science-to-policy meeting with EU officials in Brussels, which involved research from 5 EU projects,
  • Submission of a Great Debate session at EGU2024 – “Unleashing your potential as an Early-Career researcher: bridging the research-policy divide”,
  • Network meetings where we have shared our experiences, provided project introductions, and mapped out stakeholder engagement, communications and early career researcher activities across the projects and identified some topics of common interest eg. participation in COPs.

We would love to engage with other projects, hearing about their experiences in managing communication of their project results, types of activities that have been impactful and how communication roles in projects can be better networked to provide a community of practice.

Authors: Hazel Jeffery, Mariana Rocha, Helena Martins, Sara Octenjak, Rosa Rodriguez Gasen

How to cite: Jeffery, H. and Martins, H.: #ClimateResearchNet - a collaboration of climate communicators, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6332, https://doi.org/10.5194/egusphere-egu24-6332, 2024.

A.129
|
EGU24-19582
|
EOS1.1
Zsuzsanna Dezső, Márk Zoltán Mikes, and Rita Pongrácz

Due to climate change, the frequency and intensity of extreme weather events is expected to increase. Compound events, when several extreme events occur simultaneously or amplify each other, may also become more frequent in the future. To provide a realistic picture of the extremity of everyday weather events to citizens, it is important to show which phenomena are considered extreme in a given location and season. For this purpose, we developed an interactive visualisation system for the compound weather and climate extremes in Hungary. The system uses the daily measured data of 70 synoptic and climatological stations in Hungary from 2002 to the present, which are available in the database of the Hungarian Meteorological Service. The following extreme events and their intensities are calculated from the stations’ data series: days with extreme cold and warm mean temperatures, days with extreme warm maximum temperatures, days with extreme cold minimum temperatures, days with extreme daily temperature range, stormy days, days with extreme high precipitation, extreme rainy periods, extreme dry periods.The visualisation system allows users to view the extremity of weather events for a single station, regionally or nationally, with customised settings. This tool can be used as a communication platform from scientists towards non-professional users to raise climate change awareness with a special focus on extremes with high potential impacts.

Acknowledgements: Research leading to this study has been supported by the Hungarian National Research, Development and Innovation Fund (under grant K-129162) and the National Multidisciplinary Laboratory for Climate Change (RRF-2.3.1-21-2022-00014).

How to cite: Dezső, Z., Mikes, M. Z., and Pongrácz, R.: Interactive visualisation system for compound weather and climate extremes in Hungary based on station data series, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19582, https://doi.org/10.5194/egusphere-egu24-19582, 2024.

A.130
|
EGU24-9830
|
EOS1.1
Heidi Daxberger, Sarah Peirce, Katie Maloney, Andreia Hamid, Marco Esquivel Spindola, Teagan Sharrock, Magnus Roland Marun, Lingfei Liu, John Johnston, Kirsten Kennedy, Phillip Ruscica, Deana Schwarz, and Hazen Russell

The disciplines of geology and physical geography often rely on experiential learning and real-world observations, like those offered on field trips, to share knowledge and engage students. During the shift to online teaching during the COVID-19 pandemic, those in higher education had to quickly embrace innovative technologies (e.g., handheld LiDAR scanners, 3D scanner apps, affordable drones, and 360-cameras) and online applications such as ArcGIS StoryMaps to simulate these field investigations. 

Here, we are applying what we learned in higher education teaching to share knowledge and engage the general public with the geology and geomorphology of their region. Furthermore, we are employing a user-created content approach, whereby university students create educational content aimed at other students and the general public, to enhance their learning and professional development. 

Since 2020, undergraduate and graduate university students have collected photos, synthesized literature, and created digital content of outdoor spaces that can be explored freely online. This content includes digital tours of urban and natural spaces highlighting local points of interest, with a focus on geology and geomorphology (e.g., tour of the University Campus, regional geology of Southern Ontario), presented with ArcGIS StoryMaps.

Our goal is to equip all users with fundamental scientific knowledge, along with real-world observations and examples, so that they can recognize natural landforms and processes (like weathering and erosion) while deepening their understanding of the role and impact of human activities (e.g., erosion control) on the environment. To engage users and have them reflect on their learning, we will be incorporating interactive components such as knowledge check questions and citizen science contributions (e.g., photo submissions, and observational surveys) in the StoryMaps. 

To monitor professional development and learning progress of our student creators, we will include goal-setting and self-evaluation components throughout the project. Student creators will also be asked to evaluate whether participating in these projects enhanced their connection with their environment, provided opportunities to apply knowledge from their classes, and helped develop a sense of accomplishment given the finished products, their ability to share knowledge with others, and their ability to learn new skills and technologies.

Beyond regional geology and University campus tours, we are now expanding the network of sites into popular recreational spaces like parks and walking trails alongside interesting natural and designed landscapes, like urban rivers. These projects consider regional geology alongside surface processes, natural hazards, and environmental change, as well as the connections between historical and cultural context with the landscape.

How to cite: Daxberger, H., Peirce, S., Maloney, K., Hamid, A., Esquivel Spindola, M., Sharrock, T., Marun, M. R., Liu, L., Johnston, J., Kennedy, K., Ruscica, P., Schwarz, D., and Russell, H.: Engaging with Local Spaces: Student-created digital field tours to facilitate community learning, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9830, https://doi.org/10.5194/egusphere-egu24-9830, 2024.

A.131
|
EGU24-17240
|
EOS1.1
Guri Venvik, Øystein Nordgulen, Matthew Hodge, Eline Barkaas Garseth, and Per Terje Osmundsen

The BASE project, short for Basement Fracturing and Weathering on- and offshore Norway, is a research project funded by the Norwegian Research Council. While the project`s primary focus has been on disseminating its findings through scientific channels, there is growing interest emerging from local communities and schools. After several seasons of extensive fieldwork and a comprehensive core drilling campaign, we have observed an increased local curiosity and interest, particularly regarding the "why" and "what" behind our efforts. In our quest to synthesize the wealth of collected data, our goal is to contribute to a local geological exhibition showcasing updated bedrock information and delivering a compelling geological narrative of the Smøla island. This exhibition will illuminate the age of the rocks, the processes that formed them, and unravel the intricate story they convey. Our fieldwork has uncovered remarkable geological outcrops, which we believe should be shared with the broader community. In collaboration with the local “Friluftsliv” (outdoor life) community, we plan to create stops along their popular “Stikk UT!” routes. These routes and paths are clearly marked on maps and equipped with informative signs. We plan to incorporate geological insights about selected outcrops to enrich the experience for those who visit this remarkable area. Furthermore, in addition to our outreach efforts, we are dedicated to making our research relevant for primary and secondary school, with specific focus on 5th and 8th -grade pupils studying geology as part of their curriculum. To achieve this, we will employ a comprehensive approach that includes interactive storytelling on the Geological Surveys website, Geologisk arv (ngu.no) (Geoheritage), and we will provide ample information to teachers. By combining these strategies, our aim is not only to make geology accessible, but also to make it attractive and fascinating for the 5thand 8th -grade pupils. We hope to inspire the next generation of geologists and curious minds based on the captivating geological history of Smøla.  References (format style Heading)Geologisk arv (ngu.no)Stikk UT!

How to cite: Venvik, G., Nordgulen, Ø., Hodge, M., Barkaas Garseth, E., and Osmundsen, P. T.: From research to outreach – an example from the Smøla island, Mid-Norway, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17240, https://doi.org/10.5194/egusphere-egu24-17240, 2024.

A.132
|
EGU24-13276
|
EOS1.1
Teresa Drago, Jacqueline Santos, Emanuel Surducan, Ana Alberto, João Afonso, Ana Ramos, and Aurélie Fernandes

Sand is one of the most used resources in the world (50 billion tonnes per year). It plays a strategic key role in delivering geosystems services, maintaining biodiversity, supporting economic development, and securing livelihoods within communities (UNEP, 2022). Sand is everywhere in our societies: buildings, roads, dams and other infrastructures. Despite this “endless” use, sand is a finite resource, and its use occurs at a faster rate than its generation by geological processes. However, the importance of sand and the need of a sustainable management of this raw material are unknow to students at basic and secondary levels and to the public in general.

The EDUCOAST project (funded by EEAGrants) aims to promote nature-based education in coastal and marine geosciences through experimental learning. A series of initiatives to increase awareness on sand conservation were carried out as part of the EDUCOAST project. They included field and lab activities for basic and secondary school students at sandy environments (such as barrier islands and dunes) and observation of various types of sand from around the world under binocular microscope.  These “hands-on” activities focused on topics such as “what is the sand made of?” and “Let’s get to know sand better”. In total, about 500 students participated in these “hands-on” activities and the conducted surveys showed very positive feedback, where the students learnt more about these sandy environments (origin and their processes), the sand characteristics (grain-size, composition, carbonates contents) and the need for more sustainable management practices for the environmental conservation of the coastal systems.

Communication and outreach play an important role in achieving the proposed objectives. In this context, the project also participated in various initiatives such as the “European Research Night”, "Science in Summer" (promoted by the Portuguese Programme "Ciência Viva") and the "Week of Science and Technology" among others, making it possible to increase awareness in addressing issues like sand importance and conservation for approximately 700 people.

These initiatives contributed to highlight the importance of public awareness and the potential for positive change through informed and engaged students and general public.

This is a contribution of the EDUCOAST (EEAGrants, PT-INNOVATION-0067) and EMSO-PT (PINFRA/22157/2016) projects.

This work was funded by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) I.P./MCTES through national funds (PIDDAC) – UIDB/50019/2020 (https://doi.org/10.54499/ UIDB/50019/2020), UIDP/50019/2020 (https://doi.org/10.54499/UIDP/50019/2020) and LA/P/0068/2020 (https://doi.org/10.54499/LA/P/0068/2020)

Reference: UNEP 2022. Sand and sustainability: 10 strategic recommendations to avert a crisis. GRID-Geneva, United Nations Environment Programme, Geneva, Switzerland

How to cite: Drago, T., Santos, J., Surducan, E., Alberto, A., Afonso, J., Ramos, A., and Fernandes, A.: Raising Sand's Value Awareness: Science and Communication Initiatives., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13276, https://doi.org/10.5194/egusphere-egu24-13276, 2024.

A.133
|
EGU24-3201
|
EOS1.1
Rob Butler

This presentation shares experiences of delivering educational and outreach content via YouTube. It examines the reach of videos, their longevity and the utility of the platform for sharing materials – based on a personal case-study of a relatively popular and content-rich YouTube channel.

In common with many university teachers, during the Covid pandemic I developed online educational resources, including a suite of videos. These not only covered content previously delivered through in-person lectures but also enacted worked demonstrations of practical exercises. The content supported teaching in the interpretation of geological maps, field techniques, structural geology/tectonics and the geological interpretation of seismic reflection profiles. Initially these videos were hosted through the university’s Panopto account but in April 2021 I decided to collate these and publish through YouTube. Even though teaching has returned to pre-pandemic norms, I still use the videos, largely to permit flipped learning activities and for providing debriefs on practical classes. I continue to populate the channel (a new video every c 2 weeks) – chiefly making short documentaries “on location” to share geo-sites, geological techniques and concepts (including the history and primary publications behind them), and practical exercise demonstrations. While students and professional geoscientists seeking educational materials remain key audiences, the videos also target “engaged amateurs” – especially those interested in discovering field locations. Moderated discussion and clarifications are delivered through the “comments” facility on YouTube. There is a parallel website (hosted on WordPress) that holds many of the practical exercises, creating an open-access resource for geological training.

But how effective is the channel at sharing geology with diverse audiences?

YouTube provides statistics on viewer demographics and view-times. As of January 2024, the Shear Zone Channel hosts 228 videos, with c 380k views and has attracted 5.78k subscribers. Unsurprisingly most users are based in the UK, with few based elsewhere in Europe. Significant user-communities live in North America, India, Indonesia and the Philippines. Through weeks there is a drop-off of views on Fridays. Annual viewing peaks occur in early-mid December, with a rapid drop-off through the festive season that follows, as might be expected for a student-dominated viewing population. Life-time views of individual videos are remarkably variable: some show steady accumulation, others plateau after a few days of publication, a few grow exponentially. These differences reflect video content, and presumably therefore, the type of viewer. The algorithms used by YouTube to expose content to site users, and the ways users search for content, preferentially display recent video along with popular content (watched, liked, commented upon) along with that from channels to which the user has subscribed. Interrogation of activity statistics shows few users explore hosting channels or their playlists. Many find channel content through YouTube (algorithm-based) recommendations.

Content exposure on YouTube, in common with many digital resources, is prone not only to recency bias but also herding, whereby viewing populations repeatedly access the same content. Content creators can modulate this by pairing with other social media platforms or soliciting peer-recommendations.

The channel is available at: https://www.youtube.com/channel/UCIUYjr1yPCZQWYl9cJCO1mA

 

How to cite: Butler, R.: Sharing outreach and educational materials through YouTube: a case study from the Shear Zone Channel, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3201, https://doi.org/10.5194/egusphere-egu24-3201, 2024.

A.134
|
EGU24-12836
|
EOS1.1
Adam Booth, Raymond Holt, and Briony Thomas

There is an increasing demand on the geoscience community for effective dissemination of data and inferences, equitably engaging a wide audience with communication resources. Geophysical surveys are widely applied to image subsurface structures, in disciplines spanning archaeological mapping, delineating environmental and engineering risk, and resource assessment. Many of these disciplines are of great interest to public stakeholders, whether they inspire curiosity, inform local planning decisions or extend to government policy.  

As informative as geophysical images can be, they are almost exclusively presented in visual formats. Our project explores how geoscience engagement can be enriched for users with a visual impairment and/or neurodiverse condition, by converting geophysical images into tactile surfaces. Working with a local heritage agency (Barnsley Museums, UK), our initial prototypes are tactile versions of geophysical data acquired over buried industrial archaeology at the Yorkshire village of Elsecar. Through a series of co-creative interviews, we are appreciating the requirements of visually-impaired users and progressively refining the design of the tactile models – while ensuring that production remains practical (i.e., cost effective, durable product). A key consideration is the amount of detail in a dataset that can be appreciated by touch alone, requiring a balance to be struck between offering the full complexity of the geophysical dataset versus presenting a simplified interpretation. Other issues to consider include ensuring sufficient relief such that features can be discerned (workshops suggest 4 mm is both effective for a user, and practical from a manufacturing standpoint), and how to convey distance and orientation.  

Three fabrication materials have been tested to date: plywood, swell paper and acrylic. Although plywood is cheap, it proves to be insufficiently robust and carries a grain that distracts from the features of interest. Swell paper (paper which, when heat-treated, swells to produce a low-relief topography) is also cheap, and may be valuable for large-scale outreach in which the outreach resources can be considered disposable (e.g., newsletters, schools programmes, etc). Acrylic shows the most promise for permanent installations, such as in museum exhibits: while expensive, it is robust and durable, and its translucency means it could be backlit to exaggerate contrast for users with residual sight. 

We envisage presenting tactile models of the archaeological site in Barnsley Museums’ exhibits, but our broader aim is to define a series of design considerations that would allow any geophysical dataset to be effectively reproduced as a tactile surface.  

How to cite: Booth, A., Holt, R., and Thomas, B.: Enriching the inclusivity of geophysical data communication using tactile resources , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12836, https://doi.org/10.5194/egusphere-egu24-12836, 2024.

A.135
|
EGU24-12980
|
EOS1.1
|
ECS
|
Phoebe Sleath

When on PhD fieldwork on the Pembrokeshire coast in SW Wales in 2021, in my breaks I would paint the view of the rocks and sea with watercolours. I noticed that when painting I was making useful geological recordings and interpretations, which I included in my research. I bought a sketchbook and started to paint whenever I was outside, both on fieldwork and adventurers into the hills hiking and climbing. By allowing me to take the time to properly look at the changing landscape, painting became a process that increased my understanding of geology, the world, and my place within both.

Through finding my creative voice as an artist, I also found my voice both as a scientist and a person. It became easier to communicate my research, helping with writing, discussions with colleagues and drawing figures. My research moved to explore the creative side of geology, the uncertainty in how we observe and interpret faults in mountain building areas, and the way geologists communicate their findings through drawings and illustrations. I am interested in connection and perspective of landscapes across time. As a qualified Mountain Leader I love sharing the outdoors with others, to share skills and stories.

Sharing my work with others on social media has led to lots of opportunities including exhibitions and events with the Scottish Mountaineering Press, the Scottish Geology Trust, North East Open Studies, Fort William Mountain Festival and Artist-in-Residence for the Dundee Mountain Film Festival. I find people are interested in my connection to the landscape, my painting process and how they can connect better with the landscapes they love and want to protect.

How to cite: Sleath, P.: Phoebe Paints Rocks: Creative geologist and adventurer, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12980, https://doi.org/10.5194/egusphere-egu24-12980, 2024.

Posters virtual: Thu, 18 Apr, 14:00–15:45 | vHall A

Display time: Thu, 18 Apr 08:30–Thu, 18 Apr 18:00
Chairperson: Usha Harris
vA.28
|
EGU24-14964
|
EOS1.1
|
ECS
Yu Ting Yan, Yun Fann Toh, Giuliana Paneiri, and Benjamin Horton

Universities have a critical role to play in the response and recovery from the climate crisis. As institutions, universities have been resilient to changes. This resilience supplies the human, intellectual, and financial capital to understand and address the major challenge of climate change. Singapore and Norway have education exchange programmes through various scholarship programs, research collaborations, and Erasmus+. In 2023, the third expedition of Advancing Knowledge of Methane in the Arctic (AKMA3) by the Arctic University of Norway (UiT) provided students from Singapore a platform to experience how offshore expeditions in the Arctic are conducted.

On board the Norwegian Research Vessel Kronprins Haakon, Singapore students used state-of-the-art research facilities to help collect samples and data from extreme environments (cold seeps) from high-latitudes seafloor. Daily interactions with international experts of different backgrounds help us to better understand the various aspects of the scientific work related to the expedition and outreach efforts undertaken to promote Arctic science to the public.

Here, we demonstrate how our learned experience in Norway can be applied to our research projects in Singapore. Despite the differences in geological location and polar and tropical climates, we strive to show how student collaboration can help build strength between the two countries. By highlighting the adaptability and transferability of acquired knowledge, this collaborative effort aims to transcend geographical boundaries and contribute to the global advancement of scientific understanding of climate change.

How to cite: Yan, Y. T., Toh, Y. F., Paneiri, G., and Horton, B.: Strengthening the Bridge between Singapore and Norway: How Education Exchanges and Public Outreach are Applied in Climate Science, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14964, https://doi.org/10.5194/egusphere-egu24-14964, 2024.