EOS4.4 | Geoethics: The significance of geosciences for society and the environment
EDI
Geoethics: The significance of geosciences for society and the environment
Co-organized by BG8/ERE1/GM12/HS13/OS5/SSS1, co-sponsored by IAPG
Convener: Silvia Peppoloni | Co-conveners: Svitlana Krakovska, Giuseppe Di Capua, David Crookall
Orals
| Tue, 16 Apr, 08:30–12:30 (CEST)
 
Room 1.34
Posters on site
| Attendance Mon, 15 Apr, 16:15–18:00 (CEST) | Display Mon, 15 Apr, 14:00–18:00
 
Hall X1
Posters virtual
| Attendance Mon, 15 Apr, 14:00–15:45 (CEST) | Display Mon, 15 Apr, 08:30–18:00
 
vHall X1
Orals |
Tue, 08:30
Mon, 16:15
Mon, 14:00
Geoscience knowledge and practices are essential for effectively navigating the complexities of the modern world. They play a critical role in addressing urgent global challenges on a planetary scale (including, climate change and its social, humanitarian, and health impacts), informing decision-making processes and guiding education at all levels. However, the response to these challenges remains largely inadequate across the board.
By equipping both citizens and the wider societal stakeholders with the necessary knowledge background, geosciences empower them to engage in meaningful discussions, shape policies, contribute to reduce inequities and injustice, and implement solutions for local, regional, and global social-environmental problems. Within this broad scope, geoethics strives to establish a shared ethical framework that guides geoscientists’ engagement with sensitive and significant issues concerning the interaction between geoscience and society.
This session will cover a variety of topics, including theoretical and practical aspects of geoethics, ethical issues in professional practice, climate and ocean education, geoscience communication, and strategies for bridging the gap between geosciences and society.
This session is co-sponsored by the International Association for Promoting Geoethics, the Commission on Geoethics of the International Union of Geological Sciences and the Chair on Geoethics of the International Council for Philosophy and Human Sciences (www.geoethics.org).

Orals: Tue, 16 Apr | Room 1.34

Chairpersons: Giuseppe Di Capua, Silvia Peppoloni
08:30–08:35
08:35–08:45
|
EGU24-6136
|
On-site presentation
Vincent Cronin

The National Association of State Boards of Geology (ASBOG) plays an essential role in supporting the licensing of applied geoscientists in more than 30 states in the United States [1] through promulgating model law, rules, and regulations for professional licensure, [2] by developing and implementing the Fundamentals of Geology (FG) and Practice of Geology (PG) exams, and [3] by providing related educational materials.  The content of the FG and PG exams is driven substantially by the results of Task Analysis Surveys (TAS) taken by practicing geologists and academic geologists.  Before 2023, the exams included content related to ethics reflected in the earlier TAS analytical summaries;  however, ethics content is not included in the 2023 TAS or, reportedly, in the current FG or PG exams.
     ASBOG has a history of including applied ethics in its products and organizational structure.  There is a "Code of Conduct/Harassment Policy and Performance Guidelines" for the ASBOG organization on its website (ASBOG.org).  The "Professional Geologist Model Licensure Law" states that each applicant must "submit a signed statement that the applicant has read and shall adhere to any code of professional conduct/ethics and rules established by the Board..." and that the application "be signed and sworn to by the applicant before a notary public" (ASBOG 2017, lines 844-847).  Its "Model Rules and Regulations" includes a sample "Code of Ethics" for licensed professional geologists (ASBOG 2019, p. 27-29).  
     Geoscience professional organizations in the US and internationally affirm the fundamental importance of ethics in academic and applied geoscience.  Virtually all professional organizations relevant to applied-geoscience practice in the United States (e.g., AAPG, AGI, AGU, AIPG, AEG, ASBOG, GSA, SIPES...) have some form of ethics code that their members are obligated to know and adhere to.  The International Association for the Promotion of Geoethics (IAPG -- www.geoethics.org) curates a list of codes of ethics/professional practice and provides publications and educational opportunities supporting geoethics.  Another essential resource is the "Teaching Geoethics" website (serc.carleton.edu/geoethics -- Mogk and Bruckner, 2014-23).
     Robert Tepel (1995) described the essential connection between licensure laws and professional ethics.  To the extent that there is a lack of ethics content in the current 2023 TAS, candidate handbook, exam preparation resources, and FG and PG exams, ASBOG sends a message that applied ethics might not be a core competency for licensed geoscientists -- a message for which there is essentially no support among geoscience professional organizations.
          I suggest that ASBOG collaborate with IAPG and other relevant organizations to address the problems or concerns that resulted in the reported elimination/reduction of ethics content in the application, preparation, and implementation of its FG and PG exams.  Licensed professional geoscientists must continue to understand that geoethics is foundational for their work within society.  For references and resources, visit CroninProjects.org/EGU-Geoethics2024/.

How to cite: Cronin, V.: The need to include ethics content in professional licensure exams in the US (and worldwide), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6136, https://doi.org/10.5194/egusphere-egu24-6136, 2024.

08:45–08:55
|
EGU24-6573
|
ECS
|
On-site presentation
|
Hernán Bobadilla, Luisa Pinto Lincoñir, Pablo Ramirez, Thiare González, José Benado, Nilda Lay, Tania Villaseñor, Millarca Valenzuela, Mohammad Ayaz Alam, and Alejandro Pérez

The proposal of the Geoethics Code (hereinafter “Code”) of the Geological Society of Chile arises as a strategic objective of the Geoethics Group within this institution. The Code encapsulates the principles and values that ethically guide and protect the professional decisions of geoscientists in Chile to protect society and the environment. Likewise, it establishes standards of conduct from the personal to the environmental dimension of professional and scientific practice. Consequently, the Code serves as a valuable tool to the geoscientist community in Chile, facilitating reflection and decision-making within an ethical framework.

Grounded in the principles and values defined by the Geoethics Group of the Geological Society of Chile and the Cape Town Geoethics Declaration of the International Association Promoting Geoethics (IAPG) from 2016 (Di Capua et al., 2017), the Code is built upon four titles: a) Professional and scientific work; b) Geosciences and its relationship with society; c) Geosciences and its relationship with the environment; and d) Contribution to new generations of scientists and professionals in Geosciences.

The construction strategy of the Code underscores the pivotal role of the Chilean geoscientist community. Thus, the Code proposal was enriched through consultations, including surveys, meetings, discussions, and seminars, engaging the Geoscientist Community of Chile to understand their perspectives on pertinent topics and challenges. Furthermore, consultations and reflections were conducted to validate the Code proposal before and during the XVI Chilean Geological Congress in 2023. Ultimately, the Code underwent validation with experts from the IAPG, including geoscientists representing Latin America. Consequently, the Code authentically represents the concerns and challenges of the national geoscientific community while also resonating with the international geoscientific community.

Financing

This project is sponsored by the Geological Society of Chile.

Acknowledgements

To the geoscientist community of Chile, the IAPG experts and other professionals who have participated in the process of construction and reflection on the titles of the proposed Geoethics Code.

References

Di Capua, G., Peppoloni, S., Bobrowsky, P.T., 2017. The Cape Town Statement on Geoethics. Annals of Geophysics, 60, Fast Track 7: Geoethics at the heart of all geoscience. doi: 10.4401/ag-7553.

Keywords

Geoethics Code, Principles and Values, IAPG, Geoscientist Community.

How to cite: Bobadilla, H., Pinto Lincoñir, L., Ramirez, P., González, T., Benado, J., Lay, N., Villaseñor, T., Valenzuela, M., Alam, M. A., and Pérez, A.: Proposal for a Geoethics Code for the Geoscientist Community of Chile, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6573, https://doi.org/10.5194/egusphere-egu24-6573, 2024.

08:55–09:05
09:05–09:15
|
EGU24-1344
|
On-site presentation
Eric Guilyardi

Academic researchers have long been advocates of various causes in the public arena; their public advocacy to take normative positions regarding various moral, political or social issues is not new. Today, however, in the face of the many challenges facing our society, the question of researchers' public positions, particularly in relation to the environment and climate change, is being raised anew. A number of climate scientists are committed in a variety of ways, from signing op-eds to participating in the work of NGOs or think tanks, supporting legal actions or writing blog posts. In addition, the development of traditional and social media has significantly increased the public exposure of these researchers. At the same time, serious questions are being raised within the research community. Many of its members are debating the ways in which researchers can engage in such public advocacy, its advisability, and even its very principle. However, these debates are currently taking place in informal settings and, given the extensive individual experience of a number of colleagues, it is probably time to engage in this discussion in a more collective and organised way, as is done in other research communities.

Here are some examples of questions that might be discussed. How can researchers engage in public advocacy safely and responsibly? What is the role of the scientist versus the expert versus the citizen versus the activist? Can a researcher be neutral when taking a public stance? What is the risk of appearing naive, manipulated or irrelevant? How should researchers deal with vested interests and private actors? Should the climate community research geoengineering? For whom should researchers develop climate services?

Because addressing these issues involves a tension between personal values that may go beyond those shared by the scientific community, they are essentially novel ethical questions. Some may be so intimidating that many researchers choose not to engage publicly. Care must therefore be taken to organise the exchange properly, for example by creating safe internal spaces for debate or by inviting experts from other disciplines.

The French CNRS Ethics Committee has recently published on opinions on these issues[1], which I will use as a starting point for a broader discussion.


[1]  https://comite-ethique.cnrs.fr/en/comets-opinion-freedom-and-responsibility-academic-researchers-public-advocacy/

How to cite: Guilyardi, E.: Freedom and Responsibility: the Ethics of Academic Researchers’ Public Advocacy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1344, https://doi.org/10.5194/egusphere-egu24-1344, 2024.

09:15–09:25
|
EGU24-7655
|
Virtual presentation
Richard Herrington and Sarah Gordon

Leaders across geographical and political boundaries are united behind a pledge to deliver a net zero carbon world by 2050.  Society’s conundrum is that mining is an essential part of that delivery, yet is an activity regarded by many as unpalatable. Projects that have fallen short on ecological, ethical, or social grounds, serve to confirm to many that mining is currently not an industry to be trusted, rather than being the industry that could and should be empowering significant societal development.

Examples of societal failure include the incidents around the 2012 miners’ strike at the Marikana platinum mine in South Africa which escalated into violence and loss of life.  Failure on ethical grounds was most recently highlighted by the settlement of corruption claims in the Democratic Republic of Congo (DRC) where international mining company staff bribed country officials to secure “improper business advantages.”  Ecological failures are all too common and most visible in the failure of tailings storage facilities such as the 2015 Mariana (Brazil), 2019 Brumadinho (Brazil), and 2022 Jagersfontein (South Africa) dam disasters.

The challenge for those who explore, extract, and process the raw materials so vital for the energy transition, is to do so whilst delivering on true Sustainability right from the start of any project.  Mining disasters are rarely a surprise.  The proactive management of both threats and opportunities is therefore key to the urgent delivery of materials to secure our net zero future in a responsible manner.  We must ensure that this delivery is achieved by projects with wholly net positive outcomes for the environment and people.

How to cite: Herrington, R. and Gordon, S.: Delivering Critical Raw Materials: Ecological, Ethical and Societal Issues, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7655, https://doi.org/10.5194/egusphere-egu24-7655, 2024.

09:25–09:35
|
EGU24-12918
|
Virtual presentation
Emlyn Koster and Philip Gibbard

A geological definition of the Anthropocene, shorthand for humanity’s cumulative disruption of the Earth-Human Ecosystem, looms as the planet-and-people focused UN approaches its Summit of the Future in New York City on 22-23 September 2024. The International Union of Geological Sciences (IUGS) “aims to promote development of the Earth sciences through the support of broad-based scientific studies relevant to the entire Earth system”. With the UN recently declaring that the planet is in peril and in need of a rescue plan, Anthropocene considerations with a geoethical lens are urgently needed.

Each potential new interval in the Geological Time Scale begins with a working group mandated by the International Stratigraphic Commission (ICS), in the case of the Anthropocene also by its Subcommission on Quaternary Stratigraphy (SQS). The Anthropocene Working Group (AWG) was formed in 2009. In 2010, its first chair Jan Zalasiewicz with co-authors Mark Williams, Will Steffen and Paul Crutzen recognized that “the Anthropocene represents a new phase in both humankind and of the Earth, when natural forces and human forces become intertwined, so that the future of one determines the fate of the other”. In 2015, the AWG’s second and current chair Colin Waters with ten co-authors posed the question "Can nuclear weapons fallout mark the beginning of the Anthropocene Epoch?" in the Bulletin of the Atomic Scientists. This was affirmed in 2019 and the AWG presented its recommendation to the SQS in early 2024. The remaining review and decision steps are the ICS and IUGS. Reflecting concerns of other geoscience scholars as well as of other professions and an anxious public, an opposing mindset advocates for an Anthropocene event that spans the cumulative and ongoing environmental impacts of Homo sapiens. It views Geological Time Scale protocols as unsuitable for archaeological and contemporary developments, regards unemotive references to humanity’s most abhorrent invention as distasteful, and visualizes the Anthropocene Event as valuably informing a new zeitgeist for our troubled world.

In 1950 astronomer Fred Hoyle anticipated that humanity’s first view of the Earth from space would revolutionize the course of history. Insofar as a ‘giant leap of mankind’ did not result from NASA’s Apollo 1969 lunar mission with its estimated 600 million viewers, the Anthropocene Event fuels an opportunity for geoscience to inform a realistic outlook during NASA’s upcoming Artemis lunar mission. With unique knowledge of once pristine environments, current climate change and incipient sea level rise, ongoing biodiversity loss and ecosystem disruption, finite energy and mineral resources, the geoscience profession should arguably have already become a crucial asset in this troubled world.

How to cite: Koster, E. and Gibbard, P.: The most consequential ethical decision for geoscience , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12918, https://doi.org/10.5194/egusphere-egu24-12918, 2024.

09:35–09:45
09:45–09:55
|
EGU24-4054
|
Virtual presentation
Cornelia E. Nauen

The ocean has started to attract more attention in the recent past with the notions of Blue Economy and Blue Growth becoming rallying points for a new frontier for investments [1]. Many countries and institutions prepare policy papers promising to end poverty, a push for new technologies and profits to fund the development. A recent systematic review of the literature [2], however, found no trace of articulated ethics and justice notions in midst of all the lofty hope and hype surrounding the often blurred concepts. The increasing financialisation of technological developments accelerated through digitalisation and the internet are creating increasing injustices to humans and harm to nature. But, as Rushkoff argues [3], the possibilities for feedback and more circular reasoning have potential to teach everybody that there is no escape from the natural world, thus weaning us from the hyperbole of permanent exponential growth. Here it is argued that critically engaged ocean and geo-sciences with their inherent message of a changing planet through deep time can contribute to debunking the ahistorical promise of fixing self-created problems by starting on a presumed ‘clean slate’. We frequently observe a pattern of wanting to solve the damage provoked by one technology with more technology, e.g. deep sea mining [4] or further technology development in fisheries and aquaculture [5]. At country level, these deliberately disruptive industrial approaches often pay little attention to working with the affected small-scale wild food producers who account for a quarter of global production. Instead, harnessing a combination of traditional and indigenous knowledges and providing intelligible access to the sciences holds significant potential for less destructive pathways. That would also be consonant with the promotion of knowledge co-creation during the UN Ocean Decade in pursuit of a vision of ‘the science we need for the ocean we want’. Practice of co-creation will require some rethinking of the self-image of many sciences and adaptations to typical project formulation and flows. In return, this is expected to produce valuable new insights in addition to opportunities for cooperation and blue justice as steps towards transformations based on ethical principles.

 

[1] World Bank. (2016). Oceans 2030: Financing the blue economy for sustainable development. Blue Economy Development Framework, Growing the Blue Economy to Combat Poverty and Accelerate Prosperity. World Bank Group, Washington DC.

[2] Das, J. (2023). Blue Economy, Blue Growth, Social Equity and Small-scale Fisheries: A Global and National Level Review. Studies in Social Science Research, 4(1):45 p. DOI: https://doi.org/10.22158/sssr.v4n1p38

[3] Rushkoff, D. (2022). Survival of the richest. Escape fantasies of the tech billionaires. Scribepublications, UK, ISBN 978-1-915590-24-4, 212 p.

[4] Zenghui Liu, Kai Liu, Xuguang Chen, Zhengkuo Ma, Rui Lv, Changyun Wei, Ke Ma. (2023). Deep-sea rock mechanics and mining technology: State of the art and perspectives. International Journal of Mining Science and Technology, 33(9):1083-1115. https://doi.org/10.1016/j.ijmst.2023.07.007.

[5] FAO. (2022). The State of World Fisheries and Aquaculture 2022: Towards Blue Transformation. Rome, FAO. doi:10.4060/cc0461en

How to cite: Nauen, C. E.: Can geosciences help inserting social justice notions into Blue Economy narratives?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4054, https://doi.org/10.5194/egusphere-egu24-4054, 2024.

09:55–10:05
|
EGU24-2053
|
Virtual presentation
|
Martin Bohle, Rika Preiser, and Eduardo Marone

Cultural milieus determine the worldviews and practices of individuals and groups, including the reception of norms that guide them. Semiotic Cultural Psychological Theory (SCPT) methods, such as Symbolic Universes (SU), describe relationships of reception, worldviews and practice, which also applies to geo-philosophical matters [1]. This essay outlines how geoethics, for example, the Cape Town Geoethics (CTG), might be received in different cultural milieus.

The Cape Town Statement on Geoethics was proposed in 2016 at the 36th IGC [2] and is the most accessible resource on geoethics. It bundles various concepts in a Kantian/Aristotelian virtue ethics framework, illustrated, for example, by the Geoethical Promise [3].

The SU method describes the understanding, insights, and behaviour of groups of people expressing their respective cultural milieus. Extensive fieldwork identified five SU for people of European (Western) cultures [4]. The SUs called "Ordered Universe", "Interpersonal Bond", "Caring Society", "Niche of Belongingness", and "Others' World" categorise milieus, for example, in terms of relation to power and institutions or sources of trust. They corroborated with the Kohlberg hierarchy of the level of societal coordination [5] that is applicable to associate CTG and the worldviews of individuals and groups [6].

Comparing CTG and SU indicates: (1) CTG resonates most positively with people of the cultural milieu “Ordered Universe” (highest Kollberg level); (2) in other milieus, the reception of the CTG will be “measured”; (3) reception will be adverse for the milieu “Others' World” (lowest Kohlberg level). Hence, considering the quantitative distribution of SUs (in Europe), European citizens' reception of CTG is likely restrained.

Given complex-adaptive social-ecological systems of the World and Nature couple world views, human practices, and societal and natural systems [7] (see example: [8]), whether variants of CTG “fitted to different milieus” should be developed is of practical relevance. The perception of norms and their acceptance or rejection is a system feature, of which geoethics should not be agnostic.

[1] Bohle M (2019) “Homo Semioticus” Migrating Out of Area? In: Salvatore S, et al. (eds) Symbolic Universes in Time of (Post)Crisis. Springer Berlin Heidelberg, Cham, pp 295–307

[2] Di Capua G, et al. (2017) The Cape Town Statement on Geoethics. Ann Geophys 60:1–6. https://doi.org/10.4401/ag-7553

[3] Matteucci R, et al. (2014) The “Geoethical Promise”: A Proposal. Episodes 37:190–191. https://doi.org/10.18814/epiiugs/2014/v37i3/004

[4] Salvatore S, et al (2019) The Cultural Milieu and the Symbolic Universes of European Societies. In: Salvatore S, et al. (eds) Symbolic Universes in Time of (Post)crisis. Springer, Cham, pp 53–133

[5] Kohlberg L (1981) The Philosophy of Moral Development: Moral Stages and the Idea of Justice. Harber & Row, San Francisco

[6] Bohle M, Marone E (2022) Phronesis at the Human-Earth Nexus: Managed Retreat. Front Polit Sci 4:1–13. https://doi.org/10.3389/fpos.2022.819930

[7] Preiser R, Woermann M (2019) Complexity, philosophy and ethics. In: Galaz V (ed) Global Challenges, Governance, and Complexity. Edward Elgar Publishing., Cheltenham, pp 38–62

[8] Talukder B, et al. (2023) Complex Adaptive Systems-Based Conceptual Framework for Modeling the Health Impacts of Climate Change. J Clim Chang Heal 100292. https://doi.org/10.1016/j.joclim.2023.100292

How to cite: Bohle, M., Preiser, R., and Marone, E.: Perceiving Cape-Town-Geoethics (CTG) through Symbolic Universes (SU), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2053, https://doi.org/10.5194/egusphere-egu24-2053, 2024.

10:05–10:15
Coffee break
Chairpersons: David Crookall, Svitlana Krakovska
10:45–10:55
|
EGU24-758
|
ECS
|
On-site presentation
|
Pimnutcha Promduangsri, Pariphat Promduangsri, and Estelle Bellanger

Humans have been suffering increasingly from the escalating impacts of climate and ocean change.  Well known examples are droughts, flooding, wildfires, acidification, heatwaves, sea-level rise, extreme storms and biodiversity loss.  If global average temperature rises by more than 1.5°C above pre-industrial levels, multiple climate tipping points will be triggered, and indeed, some already are.  This is and will be devastating for people around the world, especially those in coastal areas.  Thus, the need for immediate and informed action has become urgent.

This presentation will outline some of the many concrete, local actions in the area of climate and ocean, undertaken by Méditerranée 2000 (Med2000), an environmental association in the South of France.  Since 1989, the association has committed its efforts and educational programs to promoting sustainable development.  Each year, the association educates more than 25,000 young people and adults, led by a team of ten specialized speakers.  Med2000’s initiatives include awareness campaigns about climate and ocean change, hands-on educational activities in local schools and events for the general public.

How to cite: Promduangsri, P., Promduangsri, P., and Bellanger, E.: Méditerranée 2000: Nurturing climate & ocean awareness, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-758, https://doi.org/10.5194/egusphere-egu24-758, 2024.

10:55–11:05
|
EGU24-8075
|
On-site presentation
Martin Mergili, Christian Bauer, Andreas Kellerer-Pirklbauer-Eulenstein, Jana Petermann, Hanna Pfeffer, Jörg Robl, and Andreas Schröder

The concepts of biodiversity and ecosystem services, focusing on the diversity of life and the services provided to humans by such diversity, in interaction with abiotic ecosystem components, are well established. Only recently, geosciences have started to challenge this rather biocentric view by highlighting that geodiversity – understood as the diversity of minerals, rocks, geological structures, soils, landforms, and hydrological conditions – provides substantial services to society and should be treated as equal partner to biodiversity. It was proposed to use the more general term natural services or, where geodiversity is much more relevant than biodiversity, geosystem services. Even though the term geosystem services is more and more employed in literature, it evolves only slowly into a commonly used concept with a clearly defined meaning. Interpretations range from all services associated with geodiversity which are independent of interactions with biotic nature, to the restriction to subsurface services. None or few of these concepts, however, include risks as negative services, or as costs of services, which is surprising as this would enable a more integrated vision on human-nature relationships. Only very recently, the potential of geosystem service maps to highlight both services and risks related to geomorphological processes was pointed out.

This work picks up landslides as a type of geomorphological process and landform, which is rather negatively connotated in society and associated with risks rather than with chances. We use landslides to develop a broader understanding of geosystem services, together with the common understanding of hazards and risks. We will (i) present a sound and integrated conceptual framework to consider landslides within the field of tension between risks and resources, and (ii) highlight a case study where landslides are used as cultural geosystem services for environmental education in the context of UNESCO Global Geoparks, which are considered important instruments for conserving and promoting geodiversity.

How to cite: Mergili, M., Bauer, C., Kellerer-Pirklbauer-Eulenstein, A., Petermann, J., Pfeffer, H., Robl, J., and Schröder, A.: Can landslides provide geosystem services?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8075, https://doi.org/10.5194/egusphere-egu24-8075, 2024.

11:05–11:15
|
EGU24-6101
|
On-site presentation
Eric Guilyardi and David Wilgenbus

Science indicates that human impact on the planet's climate is clear. Over the past 30 years, climate change has shifted from being primarily a scientific concern to emerging as one of the defining environmental challenges within our society. However, science alone cannot guide us on how to address this crisis. This challenge is also about how we envision living together, what we collectively value, and the level of risk we are prepared to assume. It fundamentally pertains to the kind of society we aspire to, making education a pivotal component. Inspired by the Paris Agreement, the time has arrived for Climate Change Education. It derives its momentum from the aspirations and mobilization of the youth, making it the most potent transformative action in response to climate change.

Climate Change Education comes with unique and exciting opportunities. Firstly, it offers a chance to learn about science in general and climate science specifically, drawing from authoritative sources like IPCC reports. Secondly, it provides an avenue to acquire life skills, humanities knowledge, and insights into global citizenship, imparting a holistic perspective to the young generation on a global scale. Lastly, it fosters critical thinking, hopeful hearts, and empathy in an ever-evolving educational landscape. However, Climate Change Education presents numerous challenges as it strives to balance the development of cognitive, emotional, and practical aspects within existing educational systems. Educators need to be prepared for this unique combination of ‘head’, ‘heart’, and ‘hands’.

The mission of the Office for Climate Education (OCE) is precisely to empower educators in preparing young generations with a robust understanding of climate change and the skills needed to act as global citizens in a changing world. The OCE, driven by collaboration between climate science and educational communities, develops sets of pedagogical resources, offers teacher professional development opportunities, and facilitates networks of practice worldwide. As a pivotal participant in the newly established Greening Education Partnership, the OCE serves as a bridge between the global landscape of IPCC-based science and the specific needs of local primary and secondary educational systems in over 20 countries.

How to cite: Guilyardi, E. and Wilgenbus, D.: Exciting times for Climate Change Education – from global opportunities to local challenges, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6101, https://doi.org/10.5194/egusphere-egu24-6101, 2024.

11:15–11:25
|
EGU24-14027
|
ECS
|
On-site presentation
Cheng Hsuan Tsui

In the Anthropocentric era, the human-driven climate crisis has become a serious global issue. To mitigate the impacts of climate change, it is crucial for humans to adopt a more sustainable way of living. Human behaviors are shaped by their culture, where religious beliefs play important roles. As a result, people turned to religions for addressing with climate change issues.

Seeming to be unrelated, religions and climate issues have found connections through social systems and communication. By endowing climate issues with religions meanings, religions are able to resonate with the ecological crisis and take meaningful actions. Through this "resonance," religions contribute to climate issues by shaping worldviews, establishing sustainable habits, initiating actions, and influencing policies.

Religious communities have recognized the severity of the human-driven climate crisis. Their call for action reflects the fact that Taiwanese society has failed to respond to the climate crisis due to its endless pursuit of consumerism. To deal with the challenges, religious communities have advocated for “Ecological Conversion”, which persuade people to save the nature for the sake of God.

How religions can empirically contribute to environment issues has been a long-discussed topic. However, previous literatures only focus on the Western-Christian World. Countries with religious beliefs other than Judeo-Christian ethics are seldom discussed. To explore the relationship between religion and climate in Asian contexts, this research will focus on Taiwan, a multicultural country with various religions.

Using the sample data from the 2020 Taiwan Social Change Survey, this study aims to explore the relationship between religion and climate by conducting factor analysis and ordinary least squares regressions.

The evidence reveals a weak connection between religions and people's climate attitudes in Taiwan. Among all the religions in Taiwan, Buddhists and Christians tend to have the most eco-friendly attitudes. The social networks within these two religious communities foster an eco-friendly atmosphere, which highlights the importance of environmental conservation. However, when it comes to peoples’ willingness to pay, faith holders are less likely to show their supports.

By illustrating the religion-climate relationship in Taiwan, this study demonstrates how these two fields intersect in a non-Western society. It also provides implications for how religions can inspire people's willingness to engage in environmental conservation efforts.

How to cite: Tsui, C. H.: Do religions matter? The empirical study of the religion-climate relation in Taiwan, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14027, https://doi.org/10.5194/egusphere-egu24-14027, 2024.

11:25–11:35
|
EGU24-17614
|
On-site presentation
Gérard Vidal, Charles-Henri Eyraud, Carole Larose, and Éric Lejan

After more than 40 years of reasoned alerts from the scientific community directed towards society, with minimal impact, a recent surge in the size and frequency of extraordinary climatic events has begun to reshape the perspectives of ordinary citizens. This situation underscores the challenge of directly influencing society with scientific evidence or models, emphasizing the crucial role of universities in training students who will occupy intermediate or elevated positions that may impact society at large.

While "Climate Fresk" has gained widespread popularity in higher education institutions as an effective tool for raising awareness about climate change and the intricate processes affecting our global earth ecosystem, concerns have arisen at the university level. The repetition of "Climate Fresk" or similar tools may be perceived as greenwashing practices, as university students are already well-acquainted with the issue. Hence, there is a need to surpass mere awareness in higher education.

As TASK Change Leaders at ENS-Lyon, we explored pedagogical and assessment tools provided by Sulitest. This initiative, extends beyond climate and ocean changes, it places a significant emphasis on various topics, including Sustainable Development Goals, earth limits, and driving processes of climate change. One of the major interest of the approach is to address all disciplines (scientific or non scientific).

We built a three-step strategy involving:

  • Administering a positioning test to enable students to assess their performance relative to the institution and the wider community.

  • Utilizing the looping tool from Sulitest, wherein small teams of students generate Multiple Choice Questions accompanied by a list of academic publications validating the terms of their questions. Subsequently, these questions are discussed in large interdisciplinary open groups, compelling students to articulate questions and answers intelligible across all disciplines.

  • Participating in the TASK to receive an assessment of their proficiency in sustainable development, evaluated by an external body.

This strategy, particularly the second step, empowers students to assume the role of a teacher or knowledge spreader in the face of a diverse peer community. It serves as a simulation of their potential future roles as educators, knowledge spreaders or decision-makers, instilling an understanding of the importance of providing validated sources and the challenges associated with crafting questions and answers comprehensible to all, preparing them for future teaching or decision-making scenarios. A notable byproduct is the creation of valuable pedagogical resources in a "connectivist MOOC flavor."

Beyond the training benefits, membership in the TASK Change Leaders group provides opportunities for discussions on the sustainability of education, green education, and competency frameworks, to apply to ourselves the concepts we are teaching.

How to cite: Vidal, G., Eyraud, C.-H., Larose, C., and Lejan, É.: Choice Question (MCQ) Peer Construction for Training Students as Climate Change decision-makers or Knowledge Spreaders, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17614, https://doi.org/10.5194/egusphere-egu24-17614, 2024.

11:35–11:45
|
EGU24-22117
|
On-site presentation
Maria Isabel Marin-Ceron
This ongoing project integrates the concept of science diplomacy, conducting an in-depth exploration of the intricate interrelations among geo-bio-cultural diversity and its pivotal role in peace building, risk management, and climate action in Colombian cities and territories. Leveraging geodiversity assessment and its correlation with biodiversity, we explore how the bio-geo duplex interacts with ethnic diversity in Colombia. The aim is to develop initiatives aligned with the ancestral knowledge of indigenous, African-descended, farmers, and mixed-Colombian communities across cities and territories withing the geoethics concept.
In the realm of science diplomacy, our emphasis lies in cultivating international collaboration and knowledge exchange to tackle intricate societal challenges. We seek to foster dialogue and cooperation among traditional and nontraditional actors, advocating for the integration of scientific expertise with local and indigenous knowledge. The study provides a comprehensive analysis, considering historical, environmental, economic, social, and political contexts. It sheds light on how these interactions unfold and their diverse representations across Colombia, including the Caribbean, Pacific, and Andean regions.

How to cite: Marin-Ceron, M. I.: Science Diplomacy with Nontraditional Actors: Enhancing Geo-Bio-Cultural Diversity in Colombian Cities and Territories, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22117, https://doi.org/10.5194/egusphere-egu24-22117, 2024.

11:45–11:55
|
EGU24-13965
|
On-site presentation
Susanne Neuer, Stephanie Pfirman, Roberta Martin, Katie Kamelamela, Amy Maas, and Nick Bates

The new School of Ocean Futures (oceans.asu.edu) at Arizona State University (Tempe, AZ, USA) has embarked on a novel way of teaching ocean science with a forward-looking philosophy that centers on the current and future states of the ocean. While situated in Arizona State University’s main campus, it leverages the location of its two offshore campuses, the Center of Global Discovery and Conservation Science in Hilo, Hawaii, and the Bermuda Institute of Ocean Sciences (BIOS) in Bermuda. The Ocean Futures programs combine aspects of traditional ocean science teaching with ocean stewardship, partnerships, and Indigenous knowledge, and focus on the communities that live with the ocean and are affected by its rapid change. In this presentation we will introduce the curriculum of the new degree, as well as the challenges encountered, and best practices learned. Novel courses include “Introduction to Ocean Futures”, a capture course that aims at increasing the interdisciplinary knowledge of oceans, while actively seeking to increase diversity and retention in the field via inclusive pedagogical practices, the historical context of oceanography and an emphasis on developing a mindset of empowerment for change. It is followed by “Ocean Communities”, a course that immerses students through an ethnobotanical lens in global mountain to ocean cultural connections, while elaborating on how various human communities engage, exchange, and build relationships with regional resources. The students will receive hands-on aquatic knowledge through field courses at BIOS, the Sea of Cortez, Hawaii, and Antarctica. The curriculum culminates with an ocean workshop and capstone course that will allow the students to work directly with partners to address real-world challenges facing coastal communities and marine systems.

 

 

How to cite: Neuer, S., Pfirman, S., Martin, R., Kamelamela, K., Maas, A., and Bates, N.: Ocean Futures: A New Paradigm and Teaching in the Age of Ocean Change, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13965, https://doi.org/10.5194/egusphere-egu24-13965, 2024.

11:55–12:05
|
EGU24-21221
|
Virtual presentation
Katie Singer

Fifty years ago, Peter Berg developed a way to locate yourself within your bio-region, starting with your watershed. To begin, trace your water from precipitation to tap—and back to precipitation. Then, how much rain fell in your area last year? How much water does your household consume per month? What percentage of your town’s water supply goes to households? to manufacturing? to farming? to golf courses? to mining operations? to extinguishing fires? What pollutants affect your water supply? Once you can map your local water supplies, consider how manufacturing transistors, operating data storage centers and streaming videos impact international waters. With awareness of our daily lives’ impacts on local and international waters, we can create realistic limits.  

How to cite: Singer, K.: Mapping water from our tap to the watershed: A first step toward ecological limits  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21221, https://doi.org/10.5194/egusphere-egu24-21221, 2024.

12:05–12:15
|
EGU24-16730
|
ECS
|
Virtual presentation
Stacey Alvarez de la Campa

Since time immemorial, nature, and by extension the ocean, have made positive contributions to the health of mankind. Whether it be fertile soil, pollination, medicine, taking part in mindfulness activities, or food, we as a species depend on the many services provided by the natural world.  Our environment can be linked to some fundamental determinants of health, such as clean air, clean water, and balanced nutrition, and emotional wellbeing.  Therefore, any environmental degradation as a result of climate change has undeniable tangible and intangible effects on human health all over the globe, and this is especially true in relation to mental health in populations occupying Large Ocean Island States (LOIS).   As climate change has led to an increase in extreme weather events, and the accompanying devastation, there has been a corresponding decrease in health and quality of life.  This presentation will explore how the impact of climate change and its corresponding impact on the ocean has enduring impacts, both physiologically and mentally.   Therefore, all of the processes and recommendations to combat climate
change will have important co-benefits to mental and physical health, and help to build resilience in the face of the dearth of resources faced by LOIS. This lack of resources must be urgently addressed, and solutions can be explored by fostering collaboration between mental health professionals and climate scientists to collect sufficient data. The resulting findings can be used to expedite access to the funds needed to implement the necessary levels of mitigation and adaptation specifically tailored to the infrastructural realities of LOIS.

How to cite: Alvarez de la Campa, S.: Climate Change, Ocean Health and Quality of Life - An Inextricable Connection in Large Ocean Island States, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16730, https://doi.org/10.5194/egusphere-egu24-16730, 2024.

12:15–12:30

Posters on site: Mon, 15 Apr, 16:15–18:00 | Hall X1

Display time: Mon, 15 Apr, 14:00–Mon, 15 Apr, 18:00
Chairpersons: Giuseppe Di Capua, Pariphat Promduangsri
X1.65
|
EGU24-2607
|
David Crookall, Pimnutcha Promduangsri, and Pariphat Promduangsri

Learning about geoethics is not easy partly because the area is relatively new (having emerged in the early 2010s), the concepts are sometimes difficult to fathom and geoethics touches on such a wide area of geoscience phenomena and on such a variety of human issues.

Learning through active, participatory engagement has been developing since the 1960s, and is now deployed, albeit sporadically, across the full educational and training spectrum (from the humanities, through the social sciences to the hard sciences).  Methods that have developed in this learning paradigm include project work, internships, experiential learning, simulation/gaming, values clarification and many more.  We contend that participatory methods are an effective way in which to learn, as supported by much research.

Our poster invites you to participate in a game-like, values clarification exercise.  We have developed a new version of an exercise that we have used in several places (Austria, Costa Rica, France, online) to unravel the knotty relations among values, principles and behaviours related to geoethical issues and dilemmas.

It is possible to play alone, but it is more enlightening and engaging to play in pairs or small groups.  Please bring a friend or two to our poster and participate in our exercise.  The basic process of the exercise can be adapted to your own specific areas of interest.  We look forward to seeing you – please bring a pencil.

(This poster was originally intended as a workshop in a short course, but our SC proposal was declined.)

How to cite: Crookall, D., Promduangsri, P., and Promduangsri, P.: Geoethics literacy:  Clarifying values, principles and behaviour, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2607, https://doi.org/10.5194/egusphere-egu24-2607, 2024.

X1.66
|
EGU24-6593
|
ECS
|
Pimnutcha Promduangsri

Educational approaches around the world are shaped by diverse geographical factors, including topography, climate, distance, urbanization and societal characteristics.  As a consequence, the methods employed for climate change education (CCedu) are expected to vary according to these geographical factors.

The United Nations Educational, Scientific and Cultural Organization (UNESCO) emphasizes the crucial role of CCedu in fostering an understanding of and effective response to the impacts of the climate crisis.  The Intergovernmental Panel on Climate Change (IPCC) highlights the importance of a globally conscious population for effectively addressing and adapting to climate change challenges.

However, rather than exploring the concept of CCedu or its effectiveness, my research project will focus on identifying the influence of geographical factors on climate change education/literacy.  In the long run, this project could potentially contribute to improving the effectiveness of CCedu.  I invite participants to visit my poster to discuss, share ideas and collaborate on this research project.

How to cite: Promduangsri, P.: Invitation to a research project on geography and climate education, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6593, https://doi.org/10.5194/egusphere-egu24-6593, 2024.

X1.67
|
EGU24-3568
Silvia Peppoloni and Giuseppe Di Capua

Geosciences play an indispensable role in the functioning of contemporary societies. Nevertheless, the technological aspects associated with the practical application of geoscientific knowledge, should not overshadow the fundamental contribution of geosciences to shaping human thought. Geosciences have not only influenced but continue to shape our perception of the world, its interrelationships, and evolution.

The ongoing ecological crisis, with its environmental, social, cultural, economic, and geopolitical implications, has stemmed from an imprudent trajectory in human development. Regrettably, there have been instances where geosciences have contributed to this irresponsible path. This oversight has led to an undervaluation of the social and cultural significance inherent in geological disciplines and the crucial role they can play in addressing current global challenges to support human societies.

Geoethics, as the ethics of responsibility towards the Earth system, is grounded in the comprehensive understanding provided by geoscientific knowledge of the complexity of reality. It stands out as the optimal tool for cultivating a new perspective on geosciences, recognizing them as fundamental disciplines crucial for addressing global environmental challenges. This recognition extends beyond technical considerations, emphasizing their cultural significance. By virtue of their epistemological foundations, the geosciences collectively represent an invaluable reservoir of knowledge for human civilization. They are indispensable for redefining the intricate relationship that binds us, as humans, to the Earth.

For this reason, geoethical thought should serve as a complementary element to knowledge in the education of geoscientists. It aims to furnish them with a principled framework and ethical values, offering guidance for any application of geoscientific knowledge to the natural environment and human communities. Additionally, geoethical thought is the ground on which to set a shared, global ethical foundation, facilitating the advancement of our interactions with nature. It seeks to actualize an ecological humanism that forms the basis for human well-being and a more sustainable development of socio-ecological systems. The geoethical perspective redefines the cultural significance and objectives of the geosciences. Geoeducation and communication emerge as fundamental tools for bridging the gap between geosciences and society. They play a crucial role in promoting geoscientific knowledge, highlighting not only its scientific value in providing technical solutions to the ecological crisis but also emphasizing the philosophical dimension of geosciences, the geosophy of living consciously and responsibly within the Earth system.

How to cite: Peppoloni, S. and Di Capua, G.: Exploring the horizon of geosciences through the lens of geoethics, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3568, https://doi.org/10.5194/egusphere-egu24-3568, 2024.

X1.68
|
EGU24-3586
Giuseppe Di Capua and Silvia Peppoloni

The development of the theoretical foundations of geoethics and its practical applications have had a notable boost in recent years, seeing the involvement of a growing number of scholars from different disciplines. This has increasingly necessitated the creation of spaces where reflections, discussions, results, and study materials can be shared. The network of scholar relationships has progressively developed physical and conceptual spaces for discussions. The goal has been to sustain conceptual consistency in geoethical thinking by anchoring reflections in the discipline's historical evolution and fostering further developments through open analysis, welcoming contributions from diverse disciplinary backgrounds. Today, what can be defined as a research infrastructure on geoethics and the promotion of its contents possesses a complex structure, serving as a convergence point for various cultural and scientific experiences.

At the core of this infrastructure lies the International Association for Promoting Geoethics - IAPG (https://www.geoethics.org), established in 2012. It consists of an Executive Committee, national sections, and Task Groups focusing on specific topics within geoethics. More recently, two new entities have augmented this infrastructure: i) the Commission on Geoethics of the International Union of Geological Sciences (IUGS), established in February 2023, that is the supporting branch of the IAPG to the IUGS and the IUGS body that officially deals with geoethics and social geosciences for the Union; ii) the Chair on Geoethics of the International Council for Philosophy and Human Sciences (CIPSH, an organization operating under the umbrella of UNESCO), established in December 2023, with the aim of expanding and reinforcing an international research network of institutions, not-governmental organizations, and individual scholars to foster interdisciplinary initiatives for bridging geosciences, humanities, and social sciences through geoethics.

The research infrastructure on geoethics has been enriched over time with two editorial initiatives: a) SpringerBriefs in Geoethics series by Springer Nature (https://www.springer.com/series/16482), founded in 2020 and supported by the IAPG, that envisions a series of short publications that aim to discuss ethical, social, and cultural implications of geosciences knowledge, education, research, practice and communication; b) the Journal of Geoethics and Social Geosciences (https://www.journalofgeoethics.eu/), a diamond open access publication of the National Institute of Geophysics and Volcanology (Rome, Italy) and supported by the IAPG, founded in 2021.

Finally, the research infrastructure on geoethics is complemented by the School on Geoethics and Natural Issues (the “Schola”), founded in 2019 (https://www.geoethics.org/geoethics-school). The “Schola” is a place for teaching and learning of the principles and values of geoethics in the light of the philosophy and history of Earth sciences. The intent is to provide background knowledge and the evaluation skills necessary to understand the complex relationship between human action on ecosystems and the decisions geoscientists make in the discipline that impact society, including improving the awareness of professionals, students, decision-makers, media operators, and the public on an accountable and ecologically sustainable development.

How to cite: Di Capua, G. and Peppoloni, S.: An infrastructure for researching on geoethics and facilitating its international promotion, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3586, https://doi.org/10.5194/egusphere-egu24-3586, 2024.

X1.69
|
EGU24-6662
|
ECS
Jayati Chawla and Susanne Benz

Environmental (in)justice arising from Climate change and urbanization exhibit uneven distributions, specifically impacting disadvantaged communities. While studies in the USA highlight the elevated heat exposure faced by low-income and ethnic minority groups, similar insights are lacking for other countries. This knowledge gap impedes a comprehensive understanding of environmental (in)justice experienced by various socio-economic and ethnic groups and hampers the identification of inadequacy in urban planning policies.

This research seeks to bridge the gap between social and environmental sciences to address environmental (in)justice by establishing a link between extreme heat (at both regional and country level) and socio-economic disparities for Australia and New Zealand. Using remotely sensed satellite data for Land Surface temperature mapping for summer (night time) and Census data of countries, the analysis explores various socio-economic indicators—such as education levels, age demographics, and the proportion of foreign populations.

Australia and New Zealand serve as pertinent case studies due to their distinct socio-economic landscapes and Indigenous populations. By recognizing the unequal distribution of urban heat and its disproportionate impact on vulnerable communities, there emerges a critical mandate to prioritize equitable urban planning policies. This research underscores the urgency for policymakers and urban planners to prioritize environmental justice interventions and integrate strategies that aim to reduce race and class disparities concerning urban heat. The findings also serve as a template for similar analyses globally; fostering inclusive, equitable and resilient urban landscapes.

How to cite: Chawla, J. and Benz, S.: Examining Race and Class Disparities in Urban Heat in Australia and New Zealand: Towards Environmental Justice in Urban Planning, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6662, https://doi.org/10.5194/egusphere-egu24-6662, 2024.

X1.70
|
EGU24-14752
|
Giovanna Antonella Dino, Susanna Mancini, Dolores Pereira, Manuela Lasagna, Francesca Gambino, Guido Prego, Domingos Gonçalves, Aida Jacinto, Daud Jamal, Josè Loite, Hélio Nganhane, Nelson Rodrigues, and Pedro Dinis

Sustainable and responsible management of geo-resources requires a rethinking and redesign of our production and consumption patterns. Awareness of the natural environment as a common good to be preserved, and knowledge of the close link between the natural environment and the socio-economic system are prerequisites for a profound change in human attitudes at both individual and societal levels. In this context, training and education of all actors involved in the management of geo-resources is an indispensable starting point for the acquisition of critical, ethical, and conscious thinking and the technical skills necessary to solve local problems and initiate sustainable development.

The present research focuses on two consequential ERASMUS+ projects: SUGERE and GEODES. Both had the common goal of the international standardization of Higher Education training and teaching in Earth Sciences and Mining Engineering.

SUGERE (Sustainable Sustainability and Wise Use of Geological Resources) was successfully completed in September 2023, involved 3 European universities (from Portugal, Spain, and Italy) and 6 non-European universities (from Mozambique, Cape Verde, and Angola). The objective was to enhance capacity building for the responsible and sustainable use of geological resources by supporting the didactic organization and standardization of 5 degree courses at Bachelor, Master and Doctorate levels in Earth Sciences and Mining Engineering. Both online and face-to-face training sessions were organized in European and African universities.

GEODES, started in June 2023, represents the continuation of the SUGERE project and involves a total of 9 partners. The same 3 European universities and 6 African institutions, formally attributing teaching and training roles to 2 universities that participated in SUGERE, already achieved a good standard in terms of infrastructures and have long teaching experience in the field of geosciences, and receiving 4 young institutions from less favored regions of Angola and Mozambique.

SUGERE and GEODES projects aim to strengthen the role of geosciences in the development of up-to-date strategies for the sustainable management of natural resources and to implement new collaborations thanks to an international network focused on local economic and social development and respect for the natural environment in the geological-mining context. The culture of sustainability and the deepening of skills in the field of geological mining form the basis for the development of the critical thinking necessary for local problem solving, the acquisition of ethical values and the technical skills that underpin sustainable development.

Deepening technical skills in geomining from a sustainable perspective is crucial for developing critical thinking and acquiring ethical values necessary for solving local problems. SUGERE and GEODES contribute to this outcome with a solid network of research, training, sharing and exchange of expertise and research activities between European and non-European universities interested in mining issues. A careful analysis of the local economic development of the countries involved in the projects is required to achieve the most effective methods for the exploration and sustainable exploitation of underground georesources.

 

How to cite: Dino, G. A., Mancini, S., Pereira, D., Lasagna, M., Gambino, F., Prego, G., Gonçalves, D., Jacinto, A., Jamal, D., Loite, J., Nganhane, H., Rodrigues, N., and Dinis, P.: Towards sustainable management of georesources: the importance of Cooperation Projects to boost education on responsible and sustainable mining. The example of the SUGERE and GEODES projects., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14752, https://doi.org/10.5194/egusphere-egu24-14752, 2024.

X1.71
|
EGU24-17346
Giuseppe Di Capua and Udaya Gunawardana

Like numerous regions worldwide, Sri Lanka faces significant environmental challenges that endanger its biodiversity, natural resources, and the well-being of its population. Predominant issues encompass water and air pollution, land degradation, deforestation, improper waste disposal, consequences of climate change, disaster risks, as well as the loss of biodiversity and geodiversity. The nexus between political, economic, and social factors contributes to these geo-environmental challenges, often exacerbated by the politicization of the environmental issues in Sri Lanka. However, it is crucial to acknowledge that human activities primarily drive these conditions. Gunnar Myrdal’s Soft State theory asserts that despite the existence of multiple governing bodies, regulations, and laws, humans strategically transcend the environment leading to the depletion of geo-environmental resources within a context of strong societal inequalities, particularly in developing countries influenced by the historical conditioning of colonial interests by developed nations. A philosophical exploration of this issue emphasizes the pivotal role of human indifference towards the environment and natural resources in causing these challenges. To address this issue effectively, a transformation in people's attitudes is imperative, and education emerges as the most potent tool for this purpose. However, a careful analysis of Sri Lanka's primary and secondary school curricula reveals an absence of a dedicated discipline addressing the philosophical and social dimensions of the geo-environmental matter. In light of this, the incorporation of subjects such as geoethics, which specifically addresses the ethical problems in the human-environment interaction, becomes paramount. Integrating geoethics into the educational framework, particularly at primary and secondary levels, stands as the foundation of a sustainable and responsible strategic approach to many societal and environmental problems. This educational strategy should envision as the most important solution to mitigate the majority of geo-environmental problems in Sri Lanka, fostering environmentally sensitive and responsible citizens.

How to cite: Di Capua, G. and Gunawardana, U.: The importance of making geoethics a central concern of Sri Lankan education strategy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17346, https://doi.org/10.5194/egusphere-egu24-17346, 2024.

X1.72
|
EGU24-20953
Susanne Neuer, Stephanie Pfirman, Roberta Martin, Katie Kamelamela, Amy Maas, Andrew Peters, and Nick Bates

The new Ocean Futures program at Arizona State University (Tempe, AZ, USA) prepares students to become coastal and marine stewards, community leaders, innovators, and researchers capable of shaping the future of the world's oceans.  The program is taught and mentored by faculty and community leaders in an environment that supports our students’ individual and collaborative strengths, creativity, and diversity.  Students learn and work across disciplines, exploring global and local ocean dynamics, ecosystems, and stressors, engaging with community contexts and livelihoods, and advancing culturally-appropriate, reciprocal stewardship.  In support of ASUʻs mission of embeddedness and linking innovation to public value, graduates of the School of Ocean Futures are equipped with the knowledge and skills to work with diverse communities and partners to create innovative solutions for our changing world.

The School of Ocean Futures educational goal is to build student capacity to apply knowledge of coastal and marine systems coupled with community partnerships to help shape thriving futures, both locally and globally.  Students engage in research and work with partners in Arizona, the Bermuda Institute of Ocean Sciences (BIOS) in Bermuda, the Center of Global Discovery and Conservation Science in Hilo, Hawaii, the Sea of Cortez, and Antarctica.

Ocean Futures education at ASU is based on an innovative “cascade” curriculum.  The cascade starts with core classes in Introduction to Ocean Futures and Ocean Communities, followed by foundational courses in sciences and mathematics, an upper-level core class in Oceanography, electives focused on partnerships, stewardship, and advanced problem-solving, and culminates in an applied workshop and capstone course where students work with partners to transfer knowledge to action in addressing problems facing coastal communities and marine systems.

How to cite: Neuer, S., Pfirman, S., Martin, R., Kamelamela, K., Maas, A., Peters, A., and Bates, N.: Shaping Thriving Ocean Futures – Education to advance healthy coastal communities and marine systems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20953, https://doi.org/10.5194/egusphere-egu24-20953, 2024.

Posters virtual: Mon, 15 Apr, 14:00–15:45 | vHall X1

Display time: Mon, 15 Apr, 08:30–Mon, 15 Apr, 18:00
Chairpersons: Giuseppe Di Capua, Pariphat Promduangsri
vX1.5
|
EGU24-10646
|
Walter Tavecchio

The project “Protects and Heats” aims to safeguard the environment, to reduce the carbon dioxide emissions and the risk of collapse of buildings affected by earthquakes.

This is a new way to heat and cool buildings and at the same time mitigate the seismic vibrations.

 

The logic of the project is to create a discontinuity (Moat) in the ground in front of the structures to be protected, similar to damping methods that are implemented to dampen the vibrations produced by mechanical machines and without compromising the stability of the buildings themselves.

The project involves the construction of a double row of aligned micro piles and the insertion of HDPE and steel pipes inside the vertical drilling holes.

Closed circuit geothermal probes will be positioned, inside some vertical holes, with a low enthalpy closed circuit geothermal system.

The method of the project is achieved by combining two types of technologies:

-   The first concerns the interposition, between the direction of the seismic waves and the buildings, of a damping barrier.

The vertical barrier starting from the topographic surface will be positioned outside the buildings, generally orthogonal to the direction of the seismic waves.

-  The second concerns the installation of geo-exchange pipes, in the holes.

How to cite: Tavecchio, W.: Protects and Heats, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10646, https://doi.org/10.5194/egusphere-egu24-10646, 2024.