- 1College of Surveying and Geo-informatics, Tongji University, Shanghai, China (liusjtj@tongji.edu.cn)
- 2Institute of Geodesy and Geoinformation Science, Technische Universität Berlin, Berlin, Germany
In lunar exploration, high-resolution topography is an important basis for safe landing and mission planning. Remote sensing images are the main data sources for the reconstruction of lunar surface topography [1]. Among them, the orbiter images preserve the topographic photometric information under different illumination directions, and the descent images contain high-resolution morphological details of the landing site. In order to integrate the advantages of multi-illumination directions of orbiter images and high resolution of descent images, we propose a joint photometric-constrained method for topography reconstruction using both orbiter and descent images. In the framework of the joint photometric-constrained Shape from Shading (SfS) [2-4], the photometric information in multi-source images illuminated from different directions is added into the cost function as a weighted regular term in topography reconstruction. We focus on the Chang'E-3 landing site. We used the Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) images of the area and Chang'E-3 descent images for experiments, and obtained topographic data of the site with a resolution better than 0.1 m/pixel. Comparing with previously derived topography [5], we verified that our topography is more consistent result with the images in multi-angle illumination rendering [6], integrating the photometric information of the multi-source images and preserving the morphological details such as small-size impact craters. The method proposed in this study not only improves the accuracy of topography reconstruction of the Chang'E-3 landing site, but also provides a new idea for the joint processing of multi-source image data.
[1] Di K., et al. (2020) Topographic mapping of the moon in the 21st century: from hectometer to millimeter scales. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2020, pp.1117-1124.
[2] Horn, B.K.P. (1990) Height and gradient from shading. International Journal of Computer Vision, 5, pp. 37–75.
[3] Beyer R.A., et al. (2018) The Ames Stereo Pipeline: NASA's Open Source Software for Deriving and Processing Terrain Data. Earth and Space Science, 5, pp. 537-548.
[4] Tenthoff M. et al. (2020) High Resolution Digital Terrain Models of Mercury. Remote Sensing, 12, p. 3989.
[5] Henriksen M.R., et al. (2017) Extracting accurate and precise topography from LROC narrow angle camera stereo observations. Icarus, 283, pp.122-137.
[6] Tong X., et al. (2023) A high-precision horizon-based illumination modeling method for the lunar surface using pyramidal LOLA data. Icarus, 390, p. 115302.
How to cite: Xie, X., Liu, S., Ma, L., Huang, Q., Chen, H., Oberst, J., and Tong, X.: Photometric-Constrained Reconstruction of Lunar Landing Site Topography Using Orbiter and Descent Images, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-19233, https://doi.org/10.5194/egusphere-egu25-19233, 2025.