PS7.5 | Modelling the internal structure of terrestrial planets and icy satellites through potential fields and topography data
EDI
Modelling the internal structure of terrestrial planets and icy satellites through potential fields and topography data
Co-organized by EMRP2/G4/GI5
Convener: Salvatore BuoninfanteECSECS | Co-conveners: Antonio Genova, Gene Schmidt, Shivangi Sharan, Maurizio Milano

Modelling the subsurface structure of planetary bodies using gravity and magnetic data has been extensively applied across a range of celestial bodies, including the Earth, Moon, terrestrial planets (i.e., Mars, Mercury, Venus), and icy satellites (e.g., Ganymede, Europa, Callisto and Enceladus). In combination with measurements of surface topography and shape, the interior properties of celestial bodies, such as thickness and density of internal layers, can be inferred. These studies are pivotal for the understanding of their geological evolution. This session will explore the latest methods and approaches in developing planetary gravity and magnetic field models, conducting topographical analyses, and carrying out data modelling techniques to unravel the internal structures of planets and satellites. Contributions spanning various aspects of planetary research, including theoretical studies, observational data, and the development of potential field solutions are welcome. Additionally, presentations on innovative data processing and interpretation methods, advances in subsurface modeling techniques, and specific case studies of geological interest are encouraged. New insights from the analysis of potential field data from past missions, combined with contributions on the preparation and anticipated findings from recent and upcoming missions (e.g., BepiColombo, JUICE, Europa Clipper, Veritas, EnVision), as well as advanced applications, will offer the community a comprehensive understanding of this dynamic area of planetary research.

Modelling the subsurface structure of planetary bodies using gravity and magnetic data has been extensively applied across a range of celestial bodies, including the Earth, Moon, terrestrial planets (i.e., Mars, Mercury, Venus), and icy satellites (e.g., Ganymede, Europa, Callisto and Enceladus). In combination with measurements of surface topography and shape, the interior properties of celestial bodies, such as thickness and density of internal layers, can be inferred. These studies are pivotal for the understanding of their geological evolution. This session will explore the latest methods and approaches in developing planetary gravity and magnetic field models, conducting topographical analyses, and carrying out data modelling techniques to unravel the internal structures of planets and satellites. Contributions spanning various aspects of planetary research, including theoretical studies, observational data, and the development of potential field solutions are welcome. Additionally, presentations on innovative data processing and interpretation methods, advances in subsurface modeling techniques, and specific case studies of geological interest are encouraged. New insights from the analysis of potential field data from past missions, combined with contributions on the preparation and anticipated findings from recent and upcoming missions (e.g., BepiColombo, JUICE, Europa Clipper, Veritas, EnVision), as well as advanced applications, will offer the community a comprehensive understanding of this dynamic area of planetary research.