Glaciers cover roughly 10 percent of the Earth’s surface and help shape landscapes and relief in high latitude regions and many mountain ranges. Subglacial processes, such as sliding, create material that shapes the landscape. Paraglacial processes also have a strong impact on the glacial landscape evolution. Debris that falls upon the ice, or is entrained it in, is advected down glacier to where it melts out, creating moraines. Existing sediment below the glacier can be mobilized by pressurized subglacial water and is then transported in proglacial rivers or deposited in lakes or fjords. The role and importance of these processes will evolve as glacier dynamics change and hydrology in glacierized catchments responds to climate change.
This session aims at gathering contributions that use modeling, laboratory, field observations and archives or remote sensing methods, or a combination thereof, to evaluate these processes. We welcome submissions that address these processes across a wide range of timescales, from sub-daily to multi-millennial, including those focused on these dynamics during past climate variations. Additionally, we are interested in research contributions focused on diverse glaciated environments from small alpine glaciers to ice sheets. Research that addresses the changes that occur as climate warms and how these processes interact with other aspects of the Earth system, including glacier dynamics, is of particular interest for this session.
Interaction between climate, glacier dynamics, and surface processes across scales
Co-organized by CR4