CR4.3 | Surface and subsurface hydrology in permafrost environments
EDI
Surface and subsurface hydrology in permafrost environments
Convener: Ylva Sjöberg | Co-conveners: Wolfram Rühaak, Élise Devoie, Jeffrey McKenzie, John Molson

Permafrost, which underlies approximately 15% of the northern hemisphere land surface, profoundly influences subsurface hydrology, the partitioning of surface and subsurface water, and mass transport processes in cold regions. Changes in climate and permafrost are therefore associated with perturbations and reconfigurations of these hydrologic systems, which has, for example, been observed as increaseses in connectivity between subsurface and surface water systems and concomitant changes in biogeochemical cycles and mass transport. Our current understanding of these interacting changes has advanced rapidly in recent years, due to technical innovations and new data stemming from inter-disciplinary fields.

For this session, we aim to bring together research that integrates understanding of the processes controlling surface and subsurface hydrology, biogeochemistry, and mass transport in permafrost regions. We welcome contributions from field-, laboratory-, remote sensing-, and modelling-based research from the cold regions of the world, focusing on a wide range of time and spatial scales. Studies on basic process understanding and those on impacts and interactions with human and other natural systems are all welcome.

Permafrost, which underlies approximately 15% of the northern hemisphere land surface, profoundly influences subsurface hydrology, the partitioning of surface and subsurface water, and mass transport processes in cold regions. Changes in climate and permafrost are therefore associated with perturbations and reconfigurations of these hydrologic systems, which has, for example, been observed as increaseses in connectivity between subsurface and surface water systems and concomitant changes in biogeochemical cycles and mass transport. Our current understanding of these interacting changes has advanced rapidly in recent years, due to technical innovations and new data stemming from inter-disciplinary fields.

For this session, we aim to bring together research that integrates understanding of the processes controlling surface and subsurface hydrology, biogeochemistry, and mass transport in permafrost regions. We welcome contributions from field-, laboratory-, remote sensing-, and modelling-based research from the cold regions of the world, focusing on a wide range of time and spatial scales. Studies on basic process understanding and those on impacts and interactions with human and other natural systems are all welcome.