SSS4.6 | Valorization of waste biomass for the production of chars and the study of its effect on soil, plant, and microorganism interactions
Valorization of waste biomass for the production of chars and the study of its effect on soil, plant, and microorganism interactions
Convener: Francisco Jesús Moreno RaceroECSECS | Co-conveners: Heike Knicker, Álvaro F. García-Rodríguez

The term "biomass" includes the biodegradable portions of products, leftovers, and residual matter of biological origin resulting from agriculture, forestry, and affiliated sectors, which encompass fisheries, aquaculture, alongside the biodegradable constituents of industrial and municipal waste. Focusing on valorization and within a circular economy approach, converting biomass residues into high-value-added products yields substantial environmental and socioeconomic advantages, rendering it a subject of considerable scientific interest. Thus, thermochemical conversion presents a promising avenue for harnessing waste biomass to produce valuable products. Hydrothermal carbonization and pyrolysis convert biomass into hydrochars and pyrochars, carbon-rich solid products that can be applied as a soil amendment to enhance or restore soil functions and fertility, potentially resulting in an increase in microbial abundance, activity and quality and/or enhanced crop production. However, both the production of these carbons, the study of their physical and chemical properties, and their potential impact on the soil-plant-microorganism system require further investigation by the scientific community.
Researchers interested in these topics are cordially invited to take part, and we especially encourage contributions in the following domains:
- Study of the impact of organic amendments on soil microbial quality and/or quantity.
- Effect of char application on plant growth, production, and productivity
- Impact of the amendments on the soil-plant-microorganism system, as a complete and interconnected system, addressing the results at both the local and holistic levels.
- Research on agricultural and environmental applications

The term "biomass" includes the biodegradable portions of products, leftovers, and residual matter of biological origin resulting from agriculture, forestry, and affiliated sectors, which encompass fisheries, aquaculture, alongside the biodegradable constituents of industrial and municipal waste. Focusing on valorization and within a circular economy approach, converting biomass residues into high-value-added products yields substantial environmental and socioeconomic advantages, rendering it a subject of considerable scientific interest. Thus, thermochemical conversion presents a promising avenue for harnessing waste biomass to produce valuable products. Hydrothermal carbonization and pyrolysis convert biomass into hydrochars and pyrochars, carbon-rich solid products that can be applied as a soil amendment to enhance or restore soil functions and fertility, potentially resulting in an increase in microbial abundance, activity and quality and/or enhanced crop production. However, both the production of these carbons, the study of their physical and chemical properties, and their potential impact on the soil-plant-microorganism system require further investigation by the scientific community.
Researchers interested in these topics are cordially invited to take part, and we especially encourage contributions in the following domains:
- Study of the impact of organic amendments on soil microbial quality and/or quantity.
- Effect of char application on plant growth, production, and productivity
- Impact of the amendments on the soil-plant-microorganism system, as a complete and interconnected system, addressing the results at both the local and holistic levels.
- Research on agricultural and environmental applications