NH1.7 | Nature-based solutions: efficacy, design, and assessment for climate change adaptation
EDI
Nature-based solutions: efficacy, design, and assessment for climate change adaptation
Co-organized by BG8/GM3/HS13, co-sponsored by AGU
Convener: Isabella SchalkoECSECS | Co-conveners: Barry Hankin, Elizabeth Follett, Hannah Champion

Nature-based solutions and eco-engineering interventions aim to work with natural processes to mitigate increased incidence in hydrometeorological extremes due to climate change. Examples of nature-based solutions include the addition of large wood or vegetation patches, floodplain reconnection, and the creation of blue-green urban infrastructures. The aims and design strategies for these interventions build on hydrological, biogeomorphic, and geochemical processes at multiple spatial and temporal scales including ecohydraulic interactions with vegetated canopy flows and large wood, sediment transport, and feedbacks with ecologic processes. Implementation and assessment frameworks for nature-based solutions are rapidly developing, with many challenges and open questions remaining. Therefore, an improved understanding of basic process-based function of nature-based solution designs and development of modelling strategies are urgently needed to ensure intervention efficacy meet the challenge of mitigating increasing extremes in a changing climate.

This session aims to form a broad range of cross-sector scholarship, including academic researchers, water managers, community stakeholders, and independent researchers. We invite you to submit abstracts broadly related to the following topics:
• Design of resilient nature-based solutions under a changing climate (floods versus droughts)
• Frameworks to evaluate nature-based solutions
• Modelling strategies of nature-based solutions: physical and numerical
• Field investigations of nature-based solutions including remote-sensing
• Implications of nature-based solutions on flow structures and sediment transport
• Ecological impacts and ecosystem services of nature-based solutions
• Management and maintenance of nature-based solutions
• Case studies of successful nature-based solution strategies including socio-economic aspects

Nature-based solutions and eco-engineering interventions aim to work with natural processes to mitigate increased incidence in hydrometeorological extremes due to climate change. Examples of nature-based solutions include the addition of large wood or vegetation patches, floodplain reconnection, and the creation of blue-green urban infrastructures. The aims and design strategies for these interventions build on hydrological, biogeomorphic, and geochemical processes at multiple spatial and temporal scales including ecohydraulic interactions with vegetated canopy flows and large wood, sediment transport, and feedbacks with ecologic processes. Implementation and assessment frameworks for nature-based solutions are rapidly developing, with many challenges and open questions remaining. Therefore, an improved understanding of basic process-based function of nature-based solution designs and development of modelling strategies are urgently needed to ensure intervention efficacy meet the challenge of mitigating increasing extremes in a changing climate.

This session aims to form a broad range of cross-sector scholarship, including academic researchers, water managers, community stakeholders, and independent researchers. We invite you to submit abstracts broadly related to the following topics:
• Design of resilient nature-based solutions under a changing climate (floods versus droughts)
• Frameworks to evaluate nature-based solutions
• Modelling strategies of nature-based solutions: physical and numerical
• Field investigations of nature-based solutions including remote-sensing
• Implications of nature-based solutions on flow structures and sediment transport
• Ecological impacts and ecosystem services of nature-based solutions
• Management and maintenance of nature-based solutions
• Case studies of successful nature-based solution strategies including socio-economic aspects