G3.5 | Observing and Understanding Continental Deformation and Seismic Strain Accumulation
EDI
Observing and Understanding Continental Deformation and Seismic Strain Accumulation
Convener: Rob Govers | Co-conveners: Sabrina Metzger, Giampiero Iaffaldano, Mario D'Acquisto

We are looking for studies that investigate how tectonic plates move, how this movement is accommodated in deformation zones, and how elastic strain builds up and is released along faults and in subduction zones. These studies should use space geodetic data and sea floor geodetic measurements in combination with observations like seismicity, geological slip rates and rakes, sea-level, and gravity. How can the observed elastic strain buildup best be used to infer the likelihood of future earthquakes? How persistent are fault asperities over multiple earthquake cycles? Are fault slip rates from paleoseismology identical to those from geodetic data? What portion of plate motion results in earthquakes, and where does the rest go? How fast are mountains currently rising? How well can we constrain the stresses that drive the observed deformation? How much do the nearly constant velocities of plates vary during the earthquake cycle, and does this influence the definition of Earth's reference frame?

We are looking for studies that investigate how tectonic plates move, how this movement is accommodated in deformation zones, and how elastic strain builds up and is released along faults and in subduction zones. These studies should use space geodetic data and sea floor geodetic measurements in combination with observations like seismicity, geological slip rates and rakes, sea-level, and gravity. How can the observed elastic strain buildup best be used to infer the likelihood of future earthquakes? How persistent are fault asperities over multiple earthquake cycles? Are fault slip rates from paleoseismology identical to those from geodetic data? What portion of plate motion results in earthquakes, and where does the rest go? How fast are mountains currently rising? How well can we constrain the stresses that drive the observed deformation? How much do the nearly constant velocities of plates vary during the earthquake cycle, and does this influence the definition of Earth's reference frame?