Union-wide
Inter- and Transdisciplinary Sessions
Disciplinary sessions AS–GM
Disciplinary sessions GMPV–TS

Session programme

ITS1

ITS – Inter- and Transdisciplinary Sessions

Programme group chair: Peter van der Beek

ITS1 – Geoscience and Society

ITS1.1/ERE7.1

The world's energy, water, and land systems are in transition and rapidly integrating, driven by forces such as socioeconomic, demographic, climatic, and technological changes as well as policies intended to meet Sustainable Development Goals (SDGs) and other societal priorities. These dynamics weave across spatial scales, connecting global markets and trends to regional and sub-regional economies. At the same time, resources are often locally managed under varying administrative jurisdictions closely tied to inherent characteristics of each commodity such as river basins for water, grid regions for electricity and land-use boundaries for agriculture. Local decisions in turn are critical in deciding the aggregate success and consequences of national and global policies. Thus, there is a growing need to better characterize the energy-water-land nexus to guide robust and consistent decision making across these scales. This session invites abstracts exploring energy-water-land dynamics, trade patterns, policy interventions, infrastructure planning and uncertainty characterization across variable spatial boundaries.

Share:
Co-organized by CL3/HS12/SSS12
Convener: Zarrar KhanECSECS | Co-conveners: Edo Abraham, Edward A. ByersECSECS
Displays
| Attendance Thu, 07 May, 08:30–10:15 (CEST)
ITS1.2/CL5.9

Weather and climate services involve the production, translation, transfer, and use of scientific information for decision-making. They include long term climate projections, monthly to seasonal forecasts and daily weather forecasts. They are particularly useful (i) for several climate sensitive sectors such as agriculture, water resources, health, energy, disaster risk reduction and (ii) in developing countries where vulnerability to climate change and weather shocks is high. This interdisciplinary session aims at showing tools, results, methodologies that could lead in fine to an operational improvement of WCS in developing countries. It focuses not only on models improvement but also on how to interact with end-users, assess WCS added value, broadcast information, avoid inequalities access, involve the private sector etc. The session will focus particularly on feedbacks and results from different case studies located in the global South.

Share:
Co-organized by EOS4/AS4/HS12/NH9
Convener: Philippe Roudier | Co-conveners: Pauline Dibi Kangah, Seyni Salack, Ibrahima Sy, Catherine Vaughan
Displays
| Attendance Fri, 08 May, 08:30–10:15 (CEST)
ITS1.4/HS4.8

The Sendai Framework for disaster risk reduction (SFDRR) and its seventh global target recognizes that increased efforts are required to develop risk-informed and impact-based multi-hazard early warning systems. Despite significant advances in disaster forecasting and warning technology, it remains challenging to produce useful forecasts and warnings that are understood and used to trigger early actions. Overcoming these challenges requires understanding of the reliability of forecast tools and implementation barriers in combination with the development of new risk-informed processes. It also requires a commitment to create and share risk and impact data and to co-produce impact-based forecasting models and services. To deal with the problem of coming into action in response to imperfect forecasts, novel science-based concepts have recently emerged. As an example, Forecast-based Financing and Impact-based Multi-Hazard Early Warning Systems are currently being implemented operationally by both governmental and non-governmental organisations in several countries as a result of increasing international effort by several organizations such as the WMO, World Bank, IFRC and UNDRR to reduce disaster losses and ensuring reaching the objectives of SFDRR. This session aims to showcase lessons learnt and best practices on impact-based multi-hazards early warning system from the perspective of both the knowledge producers and users. It presents novel methods to translate forecast of various climate-related and geohazards into an impact-based forecast. The session addresses the role of humanitarian agencies, scientists and communities at risk in creating standard operating procedures for economically feasible actions and reflects on the influence of forecast uncertainty across different time scales in decision-making. Moreover, it provides an overview of state-of-the-art methods, such as using Artificial Intelligence, big data and space applications, and presents innovative ways of addressing the difficulties in implementing forecast-based actions. We invite submissions on the development and use of operational impact-based forecast systems for early action; developing cost-efficient portfolios of early actions for climate/geo-related impact preparedness such as cash-transfer for droughts, weather-based insurance for floods; assessments on the types and costs of possible forecast-based disaster risk management actions; practical applications of impact forecasts.

Share:
Co-organized by AS4/NH9/SM3
Convener: Marc van den Homberg | Co-conveners: Bapon Fakhruddin, Andrea Ficchì, Gabriela Guimarães Nobre, Annegien Tijssen, David MacLeod, Maurine Ambani, Alison SneddonECSECS
Displays
| Attendance Thu, 07 May, 08:30–10:15 (CEST)
ITS1.5/NH9.21

Disasters caused by natural hazards often lead to significant and long-lasting disruptions of economic, social and ecological systems. To improve both ex-ante disaster risk reduction and ex-post recovery, increasing attention is placed on strengthening the “disaster resilience” of communities, cities, regions and countries. However, a lack of empirical data and evidence, a high diversity in assessment and measurement approaches as well as various definitions of disaster resilience make it difficult to establish a solid understanding of what contributes to disaster resilience and how it can be measured. This hinders targeted resilience strengthening investments and actions across all levels, that are increasingly demanded in the context of climate change adaptation and sustainable development.

This session aims to discuss concepts and frameworks that improve the understanding of economic, social and ecological resilience to various natural hazards (e.g. floods, droughts, wildfires) as well as to review current frameworks and tools that aim to measure disaster resilience. We invite submissions addressing process- and outcome-based approaches to assess or measure disaster resilience, as well as studies using remote sensing or other innovative approaches such as predictive models aiming to quantify disaster resilience. We particularly encourage presentations on operationalized and applied resilience assessment frameworks, case studies using new data sets to measure resilience as well new tools and approaches to engage with decision makers, practitioners and the general public. We also welcome submissions from governments at all levels, the development and humanitarian sector as well as practitioners that effectively work for the hazard affected communities both from the developed and developing world.

Public information:
During the live chat we will go through all displays that have been uploaded in order of appearance. To decrease confusion during the chat session, we will discuss the displays one by one and have an overall discussion at the end. Authors will provide a short summary of their work, followed by 5 minutes during which all participants can read/listen to the presentation materials and another 5 minutes (max.) for questions to the authors. We will close the session with a joint discussion on the challenges and opportunities related to resilience to natural hazard studies.

Share:
Co-organized by HS12
Convener: Viktor RözerECSECS | Co-conveners: Emilie Etienne, Adriana Keating, Finn LaurienECSECS, Colin McQuistan
Displays
| Attendance Thu, 07 May, 10:45–12:30 (CEST)
ITS1.7/SM3.5

The International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) senses the solid Earth, the oceans and the atmosphere with a global network of seismic, infrasound, and hydroacoustic sensors as well as detectors for atmospheric radioactivity. The primary purpose of the IMS data is for nuclear explosion monitoring regarding all aspects of detecting, locating and characterizing nuclear explosions and their radioactivity releases. On-site verification technologies apply similar methods on smaller scales as well as geophysical methods such as ground penetrating radar and geomagnetic surveying with the goal of identifying evidence for a nuclear explosion close to ground zero. Papers in this session address advances in the sensor technologies, new and historic data, data collection, data processing and analysis methods and algorithms, uncertainty analysis, machine learning and data mining, experiments and simulations including atmospheric transport modelling. This session also welcomes papers on applications of the IMS and OSI instrumentation data. This covers the use of IMS data for disaster risk reduction such as tsunami early warning, earthquake hazard assessment, volcano ash plume warning, radiological emergencies and climate change related monitoring. The scientific applications of IMS data establish another large range of topics, including acoustic wave propagation in the Earth crust, stratospheric wind fields and gravity waves, global atmospheric circulation patterns, deep ocean temperature profiles and whale migration. The use of IMS data for such purposes returns a benefit with regard to calibration, data analysis methods and performance of the primary mission of monitoring for nuclear explosions.

Share:
Co-organized by AS4/NH10/OS4
Convener: Martin Kalinowski | Co-conveners: Lars Ceranna, Yan Jia, Peter Nielsen, Ole Ross
Displays
| Attendance Mon, 04 May, 08:30–12:30 (CEST)
ITS1.8/SSS1.1

Citizen science (the involvement of the public in scientific processes) is gaining momentum across multiple disciplines, increasing multi-scale data production on biodiversity, earthquakes, weather, climate, health issues and food production, amongst others, that is extending the frontiers of knowledge. Successful participatory science enterprises and citizen observatories can potentially be scaled-up in order to contribute to larger policy strategies and actions (e.g. the European Earth Observation monitoring systems), for example to be integrated in GEOSS and Copernicus. Making credible contributions to science can empower citizens to actively participate as citizen stewards in decision making, helping to bridge scientific disciplines and promote vibrant, liveable and sustainable environments for inhabitants across rural and urban localities.
Often, citizen science is seen in the context of Open Science, which is a broad movement embracing Open Data, Open Technology, Open Access, Open Educational Resources, Open Source, Open Methodology, and Open Peer Review to transparently publish and share scientific research - thus leveraging Citizen Science and Reproducible Research. Both open science and citizen science pose great challenges for researchers to facilitate effective participatory science. To support the goals of the various Open Science initiatives, this session looks at what is possible and what is applied in geosciences. The session will showcase how various stakeholders can benefit from co-developed participatory research using citizen science and open science, acknowledging the drawbacks and highlighting the opportunities available, particularly through applications within mapping, technology, policy, economy, practice and society at large. Learning from bottom-up initiatives, other disciplines, and understanding what to adopt and what to change can help synergize scientific disciplines and empower participants in their own undertakings and new initiatives.

We want to ask and find answers to the following questions:
Which approaches can be used in Earth, Planetary and Space Sciences?
What are the biggest challenges in bridging between scientific disciplines and how to overcome them?
What kind of participatory citizen scientist involvement and open science strategies exist?
How to ensure transparency in project results and analyses?
What kind of critical perspectives on the limitations, challenges, and ethical considerations exist?

Share:
Co-organized by EOS2/CL5/HS12/SM3
Convener: Taru Sandén | Co-conveners: Lorenzo Bigagli, Daniel DörlerECSECS, Martin Hammitzsch, Florian HeiglECSECS, Eloise Biggs, Julia FöllmerECSECS
Displays
| Attendance Mon, 04 May, 08:30–12:30 (CEST)
ITS1.10/NH9.27

In this session, we invite contributions to explore diverse experiences with inter- and transdisciplinary research and practice, that is specifically applied in the mountain context. Taking mountains as complex social-ecological systems, they provide a concrete and spatially-defined contexts in which to explore how global change phenomena manifests and how it poses challenges and opportunities for communities and society in general.

Addressing societal concerns, and finding suitable solutions with regards to associated impacts of global change in mountains, requires and inter- and transdisciplinary (IT-TD) approach to research and practice. We invite contributions based on empirical research and/or practical experience with IT-TD, to critically reflect on these practices in the mountains context and learn from experiences that explicitly address societal grand challenges such as (but not limited to) climate change impacts and adaptation, transformations to sustainability, disaster risk reduction, or transitions to low carbon economies. We welcome contributions depicting research experiences in European mountain regions, other mountain regions around the world, as well as contributions from Early Career Researchers.

The session is led and coordinated by the Mountain Research Initiative (MRI) with expectations to be able to draw from this session as inputs for the formulation of future research agendas and coordination of research collaborations in mountain regions, worldwide.

www.mountainresearchinitiative.org

Public information:
In this session, we invite contributions to explore diverse experiences with inter- and transdisciplinary research and practice, that is specifically applied in the mountain context. Taking mountains as complex social-ecological systems, they provide a concrete and spatially-defined contexts in which to explore how global change phenomena manifests and how it poses challenges and opportunities for communities and society in general.

Addressing societal concerns, and finding suitable solutions with regards to associated impacts of global change in mountains, requires and inter- and transdisciplinary (IT-TD) approach to research and practice. We invite contributions based on empirical research and/or practical experience with IT-TD, to critically reflect on these practices in the mountains context and learn from experiences that explicitly address societal grand challenges such as (but not limited to) climate change impacts and adaptation, transformations to sustainability, disaster risk reduction, or transitions to low carbon economies. We welcome contributions depicting research experiences in European mountain regions, other mountain regions around the world, as well as contributions from Early Career Researchers.

The session is led and coordinated by the Mountain Research Initiative (MRI) with expectations to be able to draw from this session as inputs for the formulation of future research agendas and coordination of research collaborations in mountain regions, worldwide.

www.mountainresearchinitiative.org

Share:
Co-organized by EOS4/CL4/CR7/GM7
Convener: Carolina Adler | Co-convener: Aino Kulonen
Displays
| Attendance Mon, 04 May, 14:00–15:45 (CEST)
ITS1.11/OS1.14

Comprehensive studies to address ocean science issues require synergistic collaboration across the globe between many subdisciplines including science, engineering, environment, society and economics. However, it is a challenge to unify these aspects under a common program or study, and as such has been recognized as a main goal of the United Nations “Decade of Ocean Science for Sustainable Development (2021-2030)”. Consequently, this session will bring together early-career representatives from a wide range of subdisciplines to demonstrate the strength of an interdisciplinary and intercultural approach when addressing global concerns, such as the dynamic impacts of climate change, focusing on the North Atlantic region as an example.

Continuous and comprehensive data is crucial to our understanding of the ocean. Yet, developing the advanced tools and technologies required for long-term ocean monitoring is not merely an engineering problem, as the data produced by these instruments will have future environmental and socio-economic impacts. A comprehensive view of the ocean also requires an understanding of past conditions. Thus, this session will also include contributions from paleo-oceanography to link the past to the future. In this vein, we will discuss our attempts at transdisciplinary and transcultural collaboration and share what we have learned for future approaches.

We invite contributions from a wide range of enthusiasts, including those in the natural sciences (e.g. biology, physics), applied sciences (e.g. engineering and technology, business), humanities (e.g. law), and social sciences (e.g. economics, political science). We also invite contributions from educators and administrators who are interested in experimenting with novel methods of building and encouraging research within interdisciplinary and multicultural graduate school programs.

Share:
Co-organized by EOS4/CL4
Convener: Allison ChuaECSECS | Co-conveners: Jacqueline BertlichECSECS, Kriste Makareviciute-FichtnerECSECS, Subhadeep RakshitECSECS
Displays
| Attendance Mon, 04 May, 14:00–15:45 (CEST)
ITS1.12/BG1.20

A grand challenge facing society in the coming decades is to feed the growing human population in a sustainable and healthy manner. This problem is made more complex by an increasingly globalised food system and its interactions with a changing climate. Agri-food system actors - including policy makers, corporations, farmers, and consumers - must meet this challenge while considering potentially conflicting priorities, such as environmental sustainability (e.g., minimising disturbance to ecosystems via greenhouse gas emissions and the use of water, land, fertilisers and other inputs), economic viability (e.g., revenues for food producers and guaranteed access for consumers), nutritional balance and quality (e.g., addressing overconsumption and undernourishment), and resilience to climate change.
This growing complexity of agri-food systems, which can involve global supply chains and difficult environmental and societal tradeoffs, needs to be better understood.
The type of product (e.g. plant or meat based, fresh or processed), as well as the location and method of production, can play an important role in improving the nutritional quality and environmental sustainability of global food production, to enable healthy and sustainable diets. Quantifying and assessing these multiple outcomes while accounting for the linkages, interconnections, and scales of local and global supply chains will be essential for informing decisions aimed at developing sustainable and resilient agri-food systems.
This session welcomes submissions that quantify and assess a range of outcomes from agri-food systems across multiple spatial and temporal scales, and the trade-offs or synergies between them. The session will include studies providing improved methods for quantifying multiple environmental, economic or social dimensions, studies that incorporate the role of food trade into solution-development, and studies that seek to achieve multiple sustainability goals together.

Share:
Co-organized by ERE7/HS12/SSS12
Convener: Carole DalinECSECS | Co-conveners: Kyle Frankel DavisECSECS, Matti Kummu, Landon MarstonECSECS, Marta TuninettiECSECS
Displays
| Attendance Thu, 07 May, 10:45–12:30 (CEST)
ITS1.15/BG3.56

The Amazon forest is the world’s largest intact forest landscape. Due to its large biodiversity, carbon storage capacity, and role in the hydrological cycle, it is an extraordinary interdisciplinary natural laboratory of global significance. In the Amazon rain forest biome, it is possible to study atmospheric composition and processes, biogeochemical cycling and energy fluxes at the geo-, bio-, atmosphere interface under near-pristine conditions for a part of the year, and under anthropogenic disturbance of varying intensity the rest of the year. Understanding its current functioning at process up to biome level in its pristine and degraded state is elemental for predicting its response upon changing climate and land use, and the impact this will have on local up to global scale.
This session aims at bringing together scientists who investigate the functioning of the Amazon and comparable forest landscapes across spatial and temporal scales by means of remote and in-situ observational, modelling, and theoretical studies. Particularly welcome are also presentations of novel, interdisciplinary approaches and techniques that bear the potential of paving the way for a paradigm shift.

Share:
Co-organized by AS4/CL4/HS12
Convener: Jošt Valentin Lavrič | Co-conveners: Alessandro Araujo, Carlos Alberto Quesada, Matthias Sörgel
Displays
| Attendance Fri, 08 May, 10:45–12:30 (CEST)